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Lecture 2: Key Takeaways

• Early Days of Civilization 

o Two sets of “Grand Challenge” Problems

1. Problems of Resistance (ships, water wheels, projectiles,…)

2. Problems of Discharge (water distribution, jet reaction machines,…)

o Two Branches of Investigations

1. Hydraulics (artisan activity based on empirical knowledge)

2. Hydrodynamics (scientific activity based on fundamental laws of nature)

• Key Foundational Ideas for Fluid Dynamics (Antiquity to 1750)

o 384-322 BC: Aristotle—concept of continuum

o 287-212 BC: Archimedes—principles of hydrostatics

o 1452-1519: Leonardo da Vinci—principles of continuity and relative motion

o 1586: Stevin—hydrostatic pressure depends only on the height of the fluid column

o 1644: Torricelli—efflux velocity is proportional to the square root of depth

o 1669: Huygens—resistance is proportional to square of velocity

o 1687: Newton—Laws of Mechanics and theory of fluid resistance

o 1738: D. Bernoulli—pressure decreases as velocity increases

o 1742: J. Bernoulli—concept of internal pressure in moving fluids

o 1749: d’Alembert—symmetrical body would suffer no fluid force--a Paradox!
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L3Mathematical Science

• “Like the crests on the heads of peacocks…mathematics is at the top of all branches 

of knowledge.” – Lagadha in Jyotiṣa Vedāṅga (earliest astronomical text from India ca. 1400 BCE)

• “The mathematical sciences particularly exhibit order, symmetry, and limitations; 

and these are the greatest forms of the beautiful.” – Aristotle (384–322 BCE)

• “The laws of nature are but the mathematical thoughts of God.” – Euclid (325–265 BCE)

• “Mathematics is the gate and key to science.” – Bacon (1267) 

• “No human investigation can be called real science if it cannot be demonstrated 

mathematically.” – da Vinci (1452–1519)

• “Mathematics is a more powerful instrument of knowledge than any other that has 

been bequeathed to us by human agency.” – Descartes (1596-1650) 

• “A science is exact only insofar as it employs mathematics.” – Kant (1724–1804)

• “Mathematics is the queen of the sciences.” – Gauss (1777–1855)

• “A physical law must possess mathematical beauty.” – Dirac (1902–1984)

We define Mathematical Science as the application of the concepts, 

operations, and procedures of mathematics to study scientific fields.

The mathematical concepts of zero and infinity—originating in 

ancient India—are the foundational building blocks of modern 

analytical and digital computing methods for scientific studies!  
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L3Fluid Dynamics as a Mathematical Science 
(1750 – 1900)

1750 1800 1850 1900

…conditions which must 

be satisfied at the surface 

of a solid in contact with 

the fluid…are unknown.

The Navier-Stokes Equations (1849)

The Reynolds-Averaged 

Navier-Stokes (RANS) 

Equations (1895)

“…steady direct motion in round tubes is stable or 

unstable according as rDUm/m <1900 or >2000,…”

“…equations of 

mean-mean-motion…”

Source: Refs. 3.1 – 3.7; Wikipedia 

steady incompressible flow

Bernoulli’s Equation (1778)

“…it is not the laws of Mechanics that we 

lack…but only the Analysis, which has not yet 

been sufficiently developed…”

The Euler Equations (1755-57)

equation of state (a relation between p, q and r) 

*

*misprint: g should be q.



6 Copyright © 2020 by Pradeep Raj.  All Rights Reserved.

L3Foundations of Mathematical Fluid Dynamics

Source: Refs. 3.1 – 3.3, and Wikipedia 

• One equation (now called equation of state): relation between 

pressure, p, density, q, and another property, r, [temperature] which, in addition 

to q, influences p in compressible fluid (nature of fluid is assumed to be known.)

“…five equations encompassing the entire theory of 

the motion of fluids.” ─ Euler

Leonhard Euler

Swiss Mathematician

15 Apr 1707 – 8 Sep 1783

Presented 4 September 1755 [printed in 1757]

Académie Royale des Sciences et des Belles-Lettres de Berlin

‘PRINCIPES GÉNÉRAUX DU MOUVEMENT DES FLUIDES’ 

(18th Century)

• Three equations of motion derived from the first axioms 

of mechanics using ‘infinitesimal fluid particle’

P, Q, R:        accelerative forces due to gravity

p, q, u, v, w: pressure, density, and three components of velocity 

(  ): partial derivatives

• One continuity equation
*

*misprint in original paper: g should be q
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L3Tokaty on Euler’s Equations 

Source: Ref. 2.5

Grigori Tokaty

13 Oct 1909 – 23 Nov 2003

“…geometry is a branch of mathematics which treats the shape and size of

things; while Fluidmechanics is the science of motion (and equilibrium) of

bodies of deformable (and variable) shapes, under the action of

forces…some theorems and axioms of geometry do not meet the

philosophical and physical needs of mechanics generally, and of

Fluidmechanics in particular… For example, a point is usually defined as

an element of geometry which has position but no extension; a line as a

path traced out by a point in motion…But motion and matter cannot be

divorced. A point that has no extension lacks volume and, consequently,

mass, therefore is nothing; and nothing can have neither path nor

momentum, or motion.”

“Euler was, perhaps, the first to overcome this fundamental contradiction, 

by means of the introduction of his historic ‘fluid particle’, 

thus giving Fluidmechanics a powerful instrument of 

physical and mathematical analysis.”

Euler imagined a fluid particle as an infinitesimal body, small 

enough to be treated mathematically as a point, but large 

enough to possess such physical properties as volume, 

mass, density, inertia, etc.

Note: Highlighting is by Raj

“The Blood, the Flesh, and the Bones of Fluid Mechanics”

G.A. Tokaty, Soviet Scientist, Zhukovsky Academy (defected to Britain in 1947) 
Emeritus Professor, Aeronautics and Space Technology, The City University, London
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L3Euler’s Observations on 

His Five Equations of Motion of Fluids

• “The equations contain four variables x, y, z and t which are absolutely independent of 

each other… the other variables u, v, w, p and q must be certain functions of the former.”

• “…before we can begin to solve the equations, we need to know what sort of functions of

x, y, z and t must be used to express the values of u, v, w, p and q …”

• “However, since very little work has yet been done…we cannot hope to obtain a complete 

solution of our equations until the limits of Analysis have been extended much further.”

• “The best approach would therefore be to ponder well on the particular solutions of 

our differential equation that we are in a position to obtain…”

• “…if the three velocities are known, we can determine the trajectory described by 

each element of the fluid in motion.” [streamlines]

• “If the shape of the vessel in which the fluid moves is given, the fluid particles that touch the 

surface of the vessel must necessarily follow its direction,…” [surface boundary condition]

“…it is not the laws of Mechanics that we lack…but only the 

Analysis, which has not yet been sufficiently developed for this 

purpose. It is therefore clearly apparent what discoveries we still 

need to make in this branch of Science before we can arrive at a 

more perfect Theory of the motion of fluids.”

Source: Refs. 3.1 – 3.3

4 Sep 1755  [printed in 1757]‘PRINCIPES GÉNÉRAUX DU MOUVEMENT DES FLUIDES’ 
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L3Analytical Solutions of Euler Equations

Joseph-Louis Lagrange

Franco-Italian Mathematician

25 Jan 1736 – 10 Apr 1813

1. Unsteady Compressible Flow

By introducing velocity potential,  (x,y,z,t), and gravitational 

potential, (x,y,z), Lagrange reduces Euler equations to a 

single total differential equation whose integral is

• For steady, incompressible flows, the solution of the Euler equations is

The third term is typically negligibly small compared to the first two, and 

we get the now widely known ‘Bernoulli’s Equation’

Lagrange (1778) matured ‘total differential’ notion into 

a powerful mathematical tool and applied it to Euler 

equations to conclude: “the equations could be solved 

only for two particular cases”

(18th Century)

Source: Ref. 2.5 and  Wikipedia 

2. Steady Compressible Flow

Solution is the equation for case 1 (above) subject to ∂/∂t = 0, and C(t) just a constant.

Lagrange’s Concept of Velocity Potential Revolutionized Evolution of 

Fluid Dynamics—It Remains a Vital Part to This Day
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L3Mathematical Underpinnings of 
Potential Flow Theory

(18th Century)

Source: Ref. 2.5 and  Wikipedia 

• Scalar Potential

o Scalar potential is the scalar value associated with every point in a field. 

o It’s a fundamental mathematical concept that simplifies the study of quantities whose 

definition requires both magnitude and direction (vectors) over a given field or domain. 

Beware that all vector fields do not have scalar potential! 

o In physics, it describes the situation where the difference in the potential energies of an 

object at two locations depends only on its location, not upon the path taken; examples 

include gravitational potential and electrostatic potential 

“All the Effects of Nature are only the Mathematical Consequences of 

a Small Number of Immutable Laws.” ─ Laplace

o In an orthogonal coordinate system, partial derivatives of the 

potential give the magnitude of the vector

Pierre-Simon Laplace

French Scholar

23 Mar 1749 – 5 Mar 1827

• Potential Theory

o Laplace (1783) applied the language of calculus to show that a 

scalar potential, V(x,y,z), always satisfies the differential equation

o Mathematicians developed many methods to solve this linear, 

second-order PDE subject to prescribed boundary conditions

Laplace’s Equation2V = 0
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L3Advances in Fluid Dynamics:
Driven by Mathematical Techniques

(19th Century)

Source: Ref. 2.5, 3.4 and  Wikipedia 

• Cauchy (1841) mathematically proved that motion of 

a fluid particle consists of three parts

a. Translational motion at velocity V (vx, vy, vz)

b. Rigid Body Rotational motion with angular velocity w (wx wy wz)

c. Deformational motion characterized by function Ф (x, y, z) with 

nine numbers representing rate of normal and shear strains

Augustin-Louis Cauchy

French Mathematician

21 Aug 1789 – 23 May 1857

• When w is zero, the flow is irrotational consisting of 

translational and deformational motions only; the 

vorticity of the fluid is zero 

• For 2D, steady, incompressible, irrotational flow, Cauchy showed that 

the stream function, ψ(x,y), too satisfied Laplace’s equation, much like 

the velocity potential, (x,y)

o (x,y) and ψ(x,y), are associated through the Cauchy-Riemann 

conditions, and are called conjugate functions

o Fluid flows can be represented by equipotential ( = const.) 

lines and streamlines (ψ = const.) that are orthogonal

o Associated theory of analytic functions of complex variables

offers many interesting and important solutions
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(19th Century)

Source: Ref. 3.5 & 3.6 and  Wikipedia 

George Green

British Mathematician

14 Jul 1793 – 31 May 1841

Green’s Theorem
A Key Theorem for Mathematical Analysis of Potential Flows 

AN ESSAY ON THE APPLICATION OF MATHEMATICAL ANALYSIS TO 

THE THEORIES OF ELECTRICITY AND MAGNETISM
Originally published as a book in Nottingham, 1828. 

Reprinted in three parts in Journal für die reine und angewandte Mathematik Vol. 39, 1 (1850) 

p. 73–89; Vol. 44, 4 (1852) p. 356–74; and Vol. 47, 3 (1854) p. 161–221. From there 

transcribed by Ralf Stephan (ralf@ark.in-berlin.de)

Note that:
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(19th Century)

Source: Ref. 3.5 & 3.6 and  Wikipedia 

• If we denote the two continuous, single-valued functions, U and V, in 

the Green’s theorem by  and  respectively, each satisfying 𝛻2 = 0 

and 𝛻2 = 0 throughout a given region bounded by the surface S, then

• The irrotational flow of fluids in a simply-connected region is determined when either  or inward 

normal velocity  ∂/∂n is prescribed at all points of the boundary, or  over part of the boundary 

and  ∂/∂n over the remainder.

• Taking  to be the velocity potential and choosing   = 1/r, the velocity 

potential P at any point P in the space occupied by the fluid may be written as:

1st term is surface distribution of simple sources with density  ∂/∂n, and 2nd term

of double sources with axes normal to the surface and density . This is only one of

infinite surface distributions that give the same value of  throughout the interior.

Extensions of Green’s theorem to ideal fluid dynamics followed naturally 

due to the analogy of velocity potential, , with electrostatic potential,

magnetic potential, etc. (Lamb: Treatise on the Mathematical Theory of 

the Motion of Fluids, 1879; Hydrodynamics, 1895, 6th ed. 1932)

Horace Lamb

British Mathematician

27 Nov 1849 – 4 Dec 1934

Ideal Fluid Dynamics:
Application of Green’s Theorem to Irrotational Flows

• Lamb (Ch. III, 6th ed. 1932) shows that representations of P in terms of simple sources alone, or of 

double sources alone, are unique.

Dover edition, 1945 

(republication of 1932 6th edition) 

Only surface integrals!
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Induced velocity field of 

a vortex filament 

Ideal Fluid Dynamics:
Key Theorems for Flows with Vorticity (Rotational Flows) 

(19th Century)

Source: Ref. 2.5, 3.7, 3.8 and  Wikipedia 

[Cauchy had mathematically proven (1841) that the motion of a

fluid particle consisted of translational, rigid body rotational, and

deformational motions; when rotational motion is not zero, the

flow contains a string of rotating elements or vortex lines.]

William Thomson 
1st Baron Kelvin

British Mathematical Physicist

26 Jun 1824 – 17 Dec 1907

• Helmholtz postulated three theorems (1858) based 

on his proof of indestructability and uncreatability of 

vorticity in inviscid, barotropic* fluid subjected to 

conservative body forces only

Hermann von Helmholtz

German Scientist & Philosopher

31 Aug 1821 – 8 Sep 1894

• Kelvin Circulation Theorem (1867) 

o Circulation (Γ) around a closed curve moving with the fluid 

remains constant with time, that is, DΓ/Dt = 0

1. The strength of a vortex filament is 

constant along its length.

2. A vortex filament cannot end in a fluid; 

it must extend to the boundaries of the 

fluid or form a closed path.

3. In the absence of rotational external 

forces, a fluid that is initially 

irrotational remains irrotational.

*density is a function of only pressure
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L3Modified Euler Equations 
(19th Century)

Claude Louis Marie 

Henri Navier

French Engineer

10 Feb 1785 – 21 Aug 1836

• Slip boundary condition: e.g., for a wall perpendicular to z-axis

Mémoire sur les lois du Mouvement des Fluides (1823)
Mémoires de l’Académie Royale des Sciences de l’Institut de France   

• e is a function of spacing between molecules

• Contains modified Euler equations for incompressible flow 

based on a different model of fluid to account for attractive 

and repulsive intermolecular forces 

• e, a function of nature of fluid and wall, is to be determined experimentally

Navier’s Modified Euler Equations Resemble Those for 

Viscous Fluids Derived by Stokes Based on

His Theory of Internal Friction
Source: Ref. 3.9, and  Wikipedia 
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On the Theories of the Internal Friction of Fluids in Motion and of the Equilibrium 

and Motion of Elastic Solids, Transactions of Cambridge Philosophical Society, Vol. 8, 

pp 287-319, 1849 (Read April 14, 1845)

Theory of Viscous Fluids in Motion

George Stokes

British Mathematician & Physicist

13 Aug 1819 – 1 Feb 1903

(19th Century)

“The equations of Fluid Motion commonly

employed depend upon the fundamental

hypothesis that the mutual action of two

adjacent elements of the fluid is normal to the

surface which separates them.”

“But there is a whole class of motions of which

the common theory takes no cognizance

whatever, namely, those which depend on the

tangential action called into play by the sliding

of one portion of a fluid along another, or of a

“Again, suppose that water is flowing down a straight aqueduct of uniform slope, what will be the

discharge corresponding to a given slope, and a given form of the bed? Of what magnitude must an

aqueduct be, in order to supply a given place with a given quantity of water? Of what form must it be, in

order to ensure a given supply of water with the least expense of materials in the construction? These,

and similar questions are wholly out of the reach of the common theory of Fluid Motion, since they

entirely depend on the laws of the transmission of that tangential action which in it is wholly neglected.”

fluid along the surface of a solid, or of a different fluid, that action in 

fact which performs the same part with fluids that friction does with 

solids.”

Source: Ref. 3.10, and  Wikipedia 
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Boundary condition for fluid in contact with a solid

m is assumed to be constant, not dependent on pressure or temperature

“The most interesting questions connected with this subject require for their 

solution a knowledge of the conditions which must be satisfied at

the surface of a solid in contact with the fluid, which, except perhaps in case of

very small motions, are unknown.”

(19th Century)

Source: Ref. 3.10, and Wikipedia 

On the Theories of the Internal Friction of Fluids in Motion 

and of the Equilibrium and Motion of Elastic Solids 
Transactions of Cambridge Philosophical Society, Vol. 8, 

pp 287-319, 1849 (Read April 14, 1845)

George Stokes

British Mathematician & Physicist

13 Aug 1819 – 1 Feb 1903
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Direct

Sinuous

With 

increasing

rcUm/m

Source: Ref. 3.11, and  Wikipedia 

(19th Century)

An Experimental Investigation of the Circumstances which 

determine whether the Motion of Water shall be Direct or Sinuous, 

and of the Law of Resistance in Parallel Channels

Philosophical Transactions of the Royal Society of London, 

174, 1883, pp 935-982 (Read March 15, 1883) 

“…the broad fact of there being a critical

value for the velocity [Um] at which the

steady motion becomes unstable, which

critical value is proportional to m/rc

where c is the diameter of the pipe and

m/r the viscosity by the density, is

abundantly established.”

Osborne Reynolds

British Engineer and Physicist

23 Aug 1842 – 21 Feb 1912
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• Theoretical development: introduced concepts of ‘mean-mean-

motion’ and ‘relative-mean-motion’

(19th Century)

On the Dynamical Theory of Incompressible Viscous Fluids and the 

Determination of the Criterion, Philosophical Transactions of the Royal 

Society of London (A), 186, 1895, pp 123-164 (Read May 24, 1894) 

• Equations of mean-mean-motion of turbulent flows

The Reynolds-Averaged Navier-Stokes (RANS) Equations!

Source: Ref. 3.12, 3.13 and  Wikipedia 

• Experimental criterion: “…steady direct motion in round tubes 

is stable or unstable according as rDUm/m <1900 or >2000…a 

criterion for the possible maintenance of sinuous or eddying 

motion.”

Reynolds stresses

Osborne Reynolds

British Engineer and Physicist

23 Aug 1842 – 21 Feb 1912
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L3Reynolds’ 1895 Paper with RANS Equations 
A Transformative Achievement!

Source: Ref. 3.13 & 3.14

• Reynolds’ Motivation for the 1895 Paper 
o Response to Lord Rayleigh’s review comment on Reynolds’ landmark 1883 paper: 

‘In several places the author refers to theoretical investigation whose nature is not sufficiently indicated.’

o In the 1895 paper, Reynolds offers proof of the existence of the criterion for the 

values of K = r DUm/m when direct motion changes to sinuous

• Expert Reviewer Comments on the Paper 
o Sir George Stokes: ‘…the author…himself considers it [paper] as of much importance. I confess I 

am not prepared to endorse that opinion myself, but neither can I say that it may not be true.’

o Sir Horace Lamb: ‘…the paper should be published in the Transactions as containing the views of 

its author on a subject which he has to a great extent created, although much of it is obscure.’

• The “Closure Problem” needs to be solved for RANS equations to be usable
o “…one needs a means for determining the Reynolds stresses in terms of known or calculable 

quantities [mean flow]…Reynolds himself only obliquely touched on this.” – Launder (2015) 

• Turbulence Modeling (determining Reynolds stresses) for RANS equations
o G.I. Taylor (1915): “…to consider the disturbed motion of layers of air [in the atmosphere], we 

can take account of the eddies by introducing a coefficient of eddy viscosity…which we can 

express as ½r where d is an average height through which an eddy moves before mixing 

with its surroundings, and     roughly represents the average vertical velocity…where      is positive.”

“Indeed, its impact on all our lives is incalculable.” ─ Launder

For more than 100 years, quest for ‘better’ turbulence models has remained

the “holy grail” of science!
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Lecture 3:

Overarching Takeaway

“Leonhard Euler was not a 

contributor to, but the founder of, 

Fluidmechanics, its mathematical 

architect, its great river.”

- Grigori Tokaty

13 Oct 1909 – 23 Nov 2003
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