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Lecture 4: Key Takeaways

• Even after 150 years of noteworthy progress, Analytical Fluid Dynamics 

woefully inadequate to meet the emerging airplane design needs
o No solution of the problem of resistance in sight. d’Alembert’s paradox rules! 

• 1904: A breakthrough—Prandtl’s Boundary Layer theory! 

o “A most extraordinary paper of the 20th century, and probably of many centuries!”

• The first 50 years of the 20th century (1900-1950) witnessed phenomenal 

advances in Analytical Aerodynamics, but…analytical models remained 

inadequate for simulating realistic flows on irregularly shaped bodies

o EFD provided the best means of solving practical engineering problem

• 1910: Richardson laid the foundation of Numerical Fluid Dynamics
o Use difference form of differential equations; employ human computers to perform 

resulting arithmetic operations; applicable to irregularly shaped bodies, but…

o Human computers were the bottleneck!

• 1903: the first manned, controlled, powered flight by the Wright brothers!

• 1930 - 1950: Digital computers evolved

o Key to realizing von Neumann’s 1946 vision: “really efficient high-speed [digital] 

computing devices may break the present stalemate created by the failure of the 

purely analytical approach to nonlinear problems”

By 1950, all basic ingredients were in place for the evolution of 

Computational Fluid Dynamics (CFD) 
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Topics

Preface                                                                                                         

1. Introduction

2. Genesis of Fluid Dynamics (Antiquity to 1750)

3. Fluid Dynamics as a Mathematical Science (1750–1900)

4. Emergence of Computational Fluid Dynamics (1900–1950)

5. Evolution of Applied Computational Aerodynamics (1950–2000)      

5.1   Infancy through Adolescence (1950–1980)

Level I: Linear Potential Methods (LPMs)

Level II: Nonlinear Potential Methods (NPMs) 

5.2   Pursuit of Effectiveness (1980–2000)

Level III: Euler Methods

Level IV: Reynolds-Averaged Navier-Stokes (RANS) Methods                   

6. ACA Effectiveness: Status and Prospects (2000 and Beyond)           

6.1  Assessment of Effectiveness (2000–2020)

6.2 Prospects for Fully Effective ACA (Beyond 2020)

7. Closing Remarks

Appendix A. An Approach for ACA Effectiveness Assessment



4 Copyright © 2020 by Pradeep Raj.  All Rights Reserved.

L5

Paced by Impressive Advances Since The 1950s

Evolution of ACA

Note: Time frames in parenthesis indicate widespread adoption by industry

I. LINEAR POTENTIAL (1960s)

II. NONLINEAR POTENTIAL (1970s)

INVISCID, IRROTATIONAL, ISENTROPIC

(SMALL DISTURBANCES FOR COMPRESSIBLE)

+ NONLINEAR

III. EULER (1980s)

INVISCID, ROTATIONAL 

& NONISENTROPIC

IV. REYNOLDS-AVERAGED 

NAVIER-STOKES (1990s)

+ VISCOUS

URANS

LES/DES

DNS

Capabilities Directly Related to Four Levels of CFD Methods
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Mapped to Four Levels of CFD

Level III

Level II

Level I

Level IV

Adapted from Fig. 2-10, Configuration Aerodynamics 

by W.H. Mason
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CFD Methods for Aerodynamic Simulations

• Many CFD developers characterize lower level (potential [flow]) methods as “low fidelity” 

and “higher level” (Euler and RANS) methods as “high fidelity.” In this context, fidelity

implies exactness with which governing equations approximate flow physics, not necessarily 

trustworthiness of computational solutions in replicating reality. For ACA, credibility 

implying trustworthiness of solutions is of paramount importance.

• For ACA, it’s the credibility of aerodynamic data that is of utmost importance. 

Customers must have enough trust in data to use it in making decisions without 

incurring undue risk. This requires that data produced by a CFD method closely 

replicate reality. Validation is the most common approach for assessing credibility—

albeit not without its own set of challenges to be highlighted later.

• Experience has shown that higher level RANS methods do not necessarily produce 

credible data especially for complex flows that are dominated by vortices and boundary-

layer separation. Therefore, one could argue that RANS methods are not “high fidelity” for 

replicating complex flows. When considering fidelity, more is not always better. Using the 

“highest fidelity” CFD in all instances can lead to misuse of valuable resources.

• Since each CFD method is (should be?) carefully designed to solve a selected set of 

equations as accurately as possible, a potential flow method may not be inherently low 

fidelity—as long as the method is accurately solving the governing potential flow equations, 

and producing credible results for the target application. 

What Matters Most  to the Customer is Results, Not Tools!
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Level I

Linear Potential Methods

1950s – present

Flow Model

• Inviscid, Irrotational, Isentropic (Small Disturbances for Compressible Flow)

 Linear second-order PDEs with appropriate boundary conditions

 Laplace’s equation for steady, incompressible flow

 Prandtl-Glauert equation for steady, compressible flow

 Wakes not captured as part of the solution—must be explicitly modeled

Applicability 

• Attached flows that are entirely subsonic or supersonic; not transonic

• Flows not dominated by shocks, vortices, or boundary-layer separation

∞

∞ ∞∞

∆

Refs. 5.1.1  to 5.1.45
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Overview 

• Basic Formulation

o Discretize geometry into small elements

o Distribute singularities (source, doublets, vortex filaments) on each element

o Impose no-normal-flow boundary condition (BC) at control points (one per element), and 

Kutta condition at sharp trailing edge

o Solve resulting system of linear algebraic equations to determine singularity strengths

o Use Bernoulli’s equation to compute airloads

LPMs (VLMs & Panel Methods): Today’s Workhorse!

• Vortex Lattice Methods (VLMs)

o Geometry: mean surface

o Singularity type: horseshoe vortices 

o BCs: control points on mean surface

o Airloads: net pressure

• Panel Methods

o Geometry: actual surface

o Singularity type: sources, doublets or both

o Singularity distribution: constant, linear or 

higher order

o BCs: control points on actual surface

o Airloads: actual surface pressures
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1940s

• V.M. Falkner (1949): “The Scope and Accuracy of Vortex Lattice Theory” 

Report & Memoranda 2740, Aeronautical Research Council, United Kingdom

Advances in Electronic Computers and Numerical Methods 

in 1960s Made Practical VLM Applications Possible

Source: Ref. 5.1.1

Thin Sweptback Wing: L = 45o, AR = 3
21 spanwise, 6 chordwise and 41 spanwise, 12 chordwise

o Research motivated by the need to calculate loading distribution on a wing of arbitrary plan 

form including wing twist, discontinuities due to flaps, compressibility, etc.; initiated in early ‘40s

• Variations were tried extensively throughout industry during the 1950s

Thin Rectangular Wing: L = 0o, AR = 6
84 vortex lattice: 14 spanwise, 6 chordwise

o Paper outlines principles of using vortex lattice to solve potential flow problems in lifting plane 

theory; highlights key developments from Falkner’s R&M 2591 (1947) and R&M 1910 (1943)
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Rapid Development (1960s & 70s)

Falkner’s Method Extended and Adapted to Electronic Computers

• Rubbert (1964) 

o Non-planar Vortex Lattice Methods; arbitrary wings—Boeing Co. Document D6-9244 

• Margason and Lamar (1971) 

o Vortex-lattice Fortran program for estimating subsonic aerodynamic characteristics of 

complex planforms—NASA TN D-6142 

• Miranda, Elliott and Baker (1977) 

o A generalized vortex-lattice (GVL) method for 

subsonic and supersonic flow applications, 

the VORLAX code—NASA CR 2865 

• Vortex-Lattice Utilization workshop (1976) 

o Compilation of many papers—NASA SP-405 

M∞ = 0.5

α = 2o

Source: Refs. 5.1.2 – 5.1.5
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1950s

• A.M.O. Smith and J. Pierce, Douglas Aircraft Co., 

Long Beach, CA 

o Non-circulatory plane [2-D] and axially symmetric flows

o 1953--Serious work began to solve Neumann problem

 Continuous source distribution on surface panels

o 1954--Programming on IBM/701 in machine language!

And the Rest is History!  

2 July 1911 – 1 May 1997

Chief Aerodynamics Engineer, Researcho Test cases selected based on availability of 

theoretical [analytical] solutions

o From 24-point body of revolution solutions 

in 1954 to 150-points by the end of 1955!

o DAC financed all work through 1958

o ONR contract: extend the method to 3-D 

non-lifting flows

• DAC Report E.S. 26988, April 1958

A.M.O. Smith

Source: Refs. 5.1.6 & 5.1.7
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Rapid Development (1960s & 70s)

• Hess (1962) 

o Arbitrary bodies of revolution with axes perpendicular to the free stream direction—

Journal of the Aerospace Sciences

Powerful Capability to Simulate Flow About 

Realistic Geometries to Support Aircraft Design Needs

• Hess (1970) 

o Arbitrary 3-D lifting bodies—McDonnell Douglas Rept. 

MDC J0971-01 (Also in Comp. Methods in Applied 

Mechanics and Engineering, 1974)

• Woodward (1973)

o Subsonic or supersonic flow; wing-body-tail configurations; 

source and vortex distributions—NASA CR-2228

Panels for a fan-in-wing 

configuration

• Rubbert and Saaris (1968)

o Incompressible flow; arbitrary configurations; 

source and doublet distributions—Fan-in-wing 

simulation, SAE Paper 680304

• Hess and Smith (1967) 

o Extensive description of panel methods—Progress in 

Aeronautical Sciences, Vol. 8 (138 pages!)

Source: Refs. 5.1.8 – 5.1.12
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Wing-Body-Canard Analysis

Panel Methods 
Technology Comes of Age (1980s)

• PANAIR (Boeing): Magnus, Ehlers and 

Epton—NASA CR 3251, April 1980

o Subsonic or supersonic flow; arbitrary bodies;  

higher order singularity distribution

• QUADPAN (Lockheed): Youngren, 

Bouchard, Coopersmith, and Miranda—AIAA 

83-1827, July 1983

o QUADriletral PANel code: subsonic flow; 

arbitrary bodies; low-order constant 

source and doublet singularities

• MCAIR (McDonnell): Bristow and Hawk—

NASA CR 3528, March 1982

o Subsonic flow; arbitrary bodies; constant 

source, quadratic doublet singularities

• VSAERO (AMI): Maskew—NASA 

CR 166476, Dec 1982

o Subsonic flow; arbitrary bodies; piecewise 

constant doublet and source singularities P-3 AEW&C 

Development

Source: Refs. 5.1.13 – 5.1.29

Applicable to Simulating Entirely Subsonic or Supersonic 

Attached Flows Only on Full Aircraft Configurations 
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LPMs applicable to simulate 

• attached flows that are entirely 

subsonic or supersonic; not transonic

• flows not dominated by shocks, 

vortices, or boundary-layer separation

Source: Mason (Configuration Aerodynamics)

Assessment Based on 

Comparing LPM Results 

With Experimental Data!

Boundary-

layer 

separation

Example 2: Delta Wing Flow Simulation

Example 1: Symmetric and Cambered Airfoils Flow Simulation
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L5“Higher, Faster, Farther” Jet Transports
US SST (Supersonic Transport) Aircraft (1960s)

Design Needs of SST Stimulated Research in Many Areas

• June 5, 1963: FAA launched the SST program to improve upon 

the Anglo-French Concorde with quite aggressive targets

o 250 passengers

o Mcruise = 2.7 – 3.0                 

o 4,000 miles Range

Image Source: Internet

• January 15, 1964: Proposals submitted

• January 1, 1967: Boeing won the 

competition 

• May 20, 1971: Development work stopped; US Congress canceled funding

o Rising costs and lack of a clear market were likely factors 

B 2707

L-2000

o Boeing and Lockheed entries 

downselected for further 

development

o Boeing developed swing-wing 

B 2707, and Lockheed L-2000
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“Computer-Aided Aerodynamics” Demonstrated Its Usefulness

• Wave Drag Analysis–Harris (1964)

o Analysis and correlation of aircraft 

wave drag—NASA TM X-947 

• Supersonic Aircraft Design Integration

– Baals et al (1968) 

o Aerodynamic design integration of 

supersonic aircraft—AIAA Paper 68-1018;  

also in Journal of Aircraft, 7(5), 1970

“Computer-Aided Aerodynamics”

• Supersonic Wing Camber Design

– Carlson and Middleton (1964) 

o Numerical method for designing 

camber surfaces of supersonic wings 

with arbitrary planform corresponding 

to specified load distributions—NASA 

TN D-2341

Leverage Computers to Meet SST Aerodynamic Design Needs (1960s)

Source: Refs. 5.1.30  through 5.1.32
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Transonic Aircraft (1960s)

LPMs of Little Use for Accurate Transonic Flow Simulation

• Jet transport designs in the 1960s

pushed cruise speed into transonic

regime to maximize Range Factor,

Mcruise (L/D)

o C-5A (1968): Mcruise = 0.77 

o B747 (1969):    Mcruise = 0.84 – 0.88                 

o L-1011 (1970): Mcruise = 0.86        

• Drag rises with speed due to

added wave drag + shock-induced

separation drag

o The higher the drag rise Mach 

number, the better!

o Sweep helps…but design tradeoffs 

limit it to about 35o in practice

Image Source: Internet
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Transonic Aircraft Design 

EFD: Primary Means of Flow Simulation

ACA Capability Urgently Needed to Support Design Needs!

• Pearcy (1962) 

o “Peaky” airfoils: 0.02 to 0.03 increase in drag rise Mach number over NACA 6-series

• Whitcomb (1967) 
o Supercritical “roof top” airfoils

• Whitcomb (1954 Collier Trophy) 
o “Area Rule”

Source: Refs. 5.1.33 & 5.1.34
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