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Lecture 5: Key Takeaways

• Linear Potential Methods (LPMs) 
o Vortex Lattice Method (VLM) and Surface Panel Method: 1950s

o Technology comes of age in 1980s—Today’s workhorse for early stages of design

o Range of applicability limited to purely subsonic or supersonic attached flows

• ACA evolution paced by impressive 

advances since the 1950s 

o Capabilities directly related to four levels of 

CFD methods, each based on approximations 

of Navier-Stokes equations

 Level I: linear potential methods for inviscid, 

irrotational, isentropic flows

 Level II: nonlinear potential methods for inviscid, 

irrotational, isentropic flows

 Level III: Euler methods for inviscid flows

 Level IV: RANS methods for viscous flows

• “Computer-aided Aerodynamics” Demonstrated Its Usefulness for Meeting 

Supersonic Aircraft Design Needs: 1960s
o Harris Wave Drag analysis

o Aerodynamic design integration of supersonic aircraft

• Meeting Transonic Aircraft Design Needs: 1960s

o LPMs woefully inadequate
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Topics

Preface                                                                                                         

1. Introduction

2. Genesis of Fluid Dynamics (Antiquity to 1750)

3. Fluid Dynamics as a Mathematical Science (1750–1900)

4. Emergence of Computational Fluid Dynamics (1900–1950)

5. Evolution of Applied Computational Aerodynamics (1950–2000)      

5.1   Infancy through Adolescence (1950–1980)

Level I: Linear Potential Methods (LPMs)

Level II: Nonlinear Potential Methods (NPMs) 

5.2   Pursuit of Effectiveness (1980–2000)

Level III: Euler Methods

Level IV: Reynolds-Averaged Navier-Stokes (RANS) Methods                   

6. ACA Effectiveness: Status and Prospects (2000 and Beyond)           

6.1  Assessment of Effectiveness (2000–2020)

6.2 Prospects for Fully Effective ACA (Beyond 2020)

7. Closing Remarks

Appendix A. An Approach for ACA Effectiveness Assessment
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Level II

Nonlinear Potential Methods

1970s - present

Flow Model

• Inviscid, Irrotational, Isentropic

 Nonlinear second-order PDEs with appropriate boundary conditions

 Transonic Small Disturbance (TSD) or Full Potential formulations

o Mass conserved across discontinuities

o Momentum deficiency provides an estimate of wave drag

o Wakes not captured as part of the solution—must be explicitly modeled

Applicability

• Transonic flows with weak shocks

• Flows with no distributed vorticity and/or boundary-layer separation
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1970s

“Supersonic zone and shock waves appear naturally in 

the course of the solution.”
Source: Refs. 5.1.35

Murman and Cole (1970)

o Landmark paper AIAA 70-188, Jan 1970; published in the 

AIAA Journal, 9 (1), 1971

o Mixed finite difference scheme for perturbation potential 

equation of plane steady transonic flow; requires meshing a 

domain surrounding the geometry

Earll Murman

Hon Fellow AIAA

Boeing, Flow Research, NASA

MIT Professor Emeritus

Born: 12 May 1942

Transonic similarity parameter after Spreiter

• 74x41 mesh points

• 400 iterations

• 30 minutes on IBM 360/44

Circular Arc Airfoil
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M∞ = 0.825

α = 4o

Transonic Small Disturbance (TSD) Equations
Methods for Wing and Wing-Fuselage Configurations

A New Transonic Aerodynamic Analysis and Design Capability!

• Boppe (1978) 

o Transonic flow about realistic 

aircraft configurations—

AIAA Paper 78-104, 1978

• Bailey and Ballhaus (1975)

o Good comparisons of computed and measured pressures for transonic flows 

on wing and wing-fuselage configurations—NASA SP-347

Source: Refs. 5.1.36 & 5.1.37

o Finite-difference scheme 

applied to an improved 

TSD equation 

 Unique grid embedding 

scheme to improve 

solution accuracy

o Approx. 45 minutes on 

IBM 370 

(15 mins. on CYBER 175)
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A Method for Swept Wings

Jameson and Caughey (1976) 

o FLO 22: 3-D swept wings

 Full Potential Equations transformed into 

sheared parabolic coordinates

 Solved using Jameson’s coordinate invariant 

rotated difference scheme 

FRS, Hon Fellow AIAA,

Foreign Member NAE

‘Father of FLO & SYN 

Series of CFD Codes’ 

Hawker Siddeley, Grumman

NYU, Princeton, Stanford,

Texas A&M

Born: 20 Nov 1934

Source: Refs. 5.1.38 to 5.1.42

Antony Jameson

o Theory, Results, and Computer Program in ERDA Research and Development Report, 

COO-3077-140, 1977

o Final Mesh: 192x24x32 cells; 100 relaxation 

sweeps; 85 minutes CPU time on CDC 6600
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M∞ = 0.85

α = 4.68o

(Inboard)

(Outboard)

(Wing fuselage)
(Wing alone)

Transonic Full Potential Equations 
A Method for Wing-Body Combinations

Caughey and Jameson (1980) 

o FLO 28 & FLO 30: transonic flow past wing-body combinations using 

finite-volume method on boundary conforming grids—AIAA J, 18(11), 1980

Source: Ref. 5.1.43

 FLO-28: Fully conservative difference scheme in 

the Joukowsky/parabolic coordinate system.

 FLO-30: Fully conservative difference scheme in 

the cylindrical/wind-tunnel coordinate system.

Transonic swept wing of supercritical section 

on a non-axisymmetric fuselage, 

representative of A-7 configuration

o Three-mesh sequence; coarsest mesh: 40x6x8 

cells; finest mesh: 160x24x32 cells

o 200 iterations on two coarse meshes; 100 on 

finest mesh  

o 35 minutes of CPU time on CDC 7600
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NACA 0012

M = 0.814

Re = 24.7 million

Inviscid

Experiments

Limitations of Potential Flow Methods
Implications of Neglecting Viscosity

• Potential Flow Methods, Linear and Nonlinear,  

Being Inherently Inviscid, Cannot Capture 

Effect of Viscosity on the Flow Field

o Particularly problematic for transonic flows

• 1970s: Two Viscous-Inviscid Interaction Schemes 

Developed to Simulate Effects of Viscosity

1. Add boundary-layer (B.L.) displacement 

thickness, d, to configuration surface and 

compute potential flow on the new surface

 Estimate d using integral B.L. equations

2. Use transpiration boundary condition on 

configuration surface to compute potential flow 

which simulates change in shape due to B.L.

 More convenient; no need to regenerate mesh

Source: Refs. 5.1.44 and 5.1.45
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Why Not Use RANS Methods? 

• Laminar Flows (Considered as a special case of RANS with Zero Turbulence!)

o MacCormack (1971)—Pioneering investigation of shock-wave interaction with laminar 

boundary layer

o Carter (1972)—Supersonic laminar flow over a 2-D compression corner

o Li (1974)—laminar flow separation on blunt flared cones at angle of attack

o Tannehill et al. (1976)—2-D blunt-body flows with impinging shock 

Source: Refs. 5.1.46 to 5.1.52

• Turbulent Flows

o Wilcox (1974)—turbulent boundary-

layer shock-wave interaction

o Deiwert (1974)—high Reynolds 

number transonic flow simulation

o Shang & Hankey (1975)—supersonic 

and hypersonic turbulent flows over a 

compression ramp

Supercritical Airfoil

o Deiwert and Bailey (1978)—computing airfoil aerodynamics with RANS codes

“…RANS approximation…a more youthful stage of development.” 
— Dean Chapman, Director of Aeronautics, NASA Ames

o Steger and Kutler (1976)—implicit finite-difference 

procedures for computation of vortex wakes

They Overcome Limitations of Potential Flow Methods!

Very Active Area of Research in the 1970s, But Not Many Practical Applications 
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Phenomenal Cost-performance Increase Over 25 Years

Factoid: early computing speed measure was kilo-girls, roughly the calculating ability of a thousand women! 

1 MFLOP

Digital Computers: 
A Key Enabler for RANS CFD Research

Source: Ref. 5.1.53

Speed & Cost Trends (1950 to 1975)

NASF

Numerical 

Aerodynamic 

Simulation 

Facility 
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Expert Assessment of CFD Future (Mid-1970s) 

“To displace wind tunnels as the principal

source of flow simulations for aircraft

design, computers must reach about 104

times the speed of ILLIAC IV…such

computer performance should be

available in the mid-1980s, or somewhat

later...”

The Adolescent Years with Irrational Exuberance!
We got caught up in the euphoria of our promising accomplishments

“…within a decade computers should begin to supplant wind 

tunnels in the aerodynamic design and testing process…”

Source: Ref. 5.1.54

Computers vs. Wind Tunnels for Aerodynamic Flow Simulations
DEAN R. CHAPMAN, HANS MARK, and MELVIN W. PIRTLE

NASA Ames Research Center

AIAA Astronautics & Aeronautics 

APRIL 1975         VOLUME 13, NO. 4
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“Fortunately there is an exciting new technology…Two workers at UNCAF (United

Nations Computational Aerodynamics Facility) have recently made a startling

discovery…by building a small wooden model of an airplane and then

blowing air past it in an enclosed tunnel, reasonably accurate predictions

may be made of what the flow codes would compute. Also, some factors,

such as artificial viscosity (numerical diffusion), are neglected completely in wind

tunnel modeling.”

“Imagining the Future”

Long After CFD Displaced Wind Tunnels!

“While the wind tunnel may never fully replace the computer, it is almost 

certain to become the most useful engineering tool of the future.”

Will the Wind Tunnel Replace the Computer?
By BOB COOPERSMITH

AIAA Student Journal 

Summer 1985

“The most accurate aerodynamic prediction code available today, FLO-1234.5, is

so complex and expensive that it has never been run. Many other codes, if run to

completion, would require CPU time exceeding the average human lifespan.”
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Source: Ref. 5.1.55

Symbiosis: Why CFD and wind tunnels need each other 
By JOE STUMPE

AIAA Aerospace America

JUNE 2018

As powerful as computational fluid 

dynamics and supercomputing are, they 

have not come close to relegating wind 

tunnels to history. In fact, in the U.S., a new 

tunnel is going up at MIT, and NASA is 

deliberating whether it should close a 

historic tunnel at NASA’s Langley Research 

Center in Virginia four years from now as 

planned.

Computers Have Failed to Supplant W/Ts Defying Experts!
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While the World of CFD Was Exploding in ’50s &’60s

1950s (Foundational Years)

1963  High School (10th grade): Government Higher Secondary School,   

Muzaffarnagar, U.P., India (1st division; distinction in English, Mathematics, Science 

and Sanskrit; ranked 15th in statewide exam) 

1965   Intermediate College (12th grade): S.D. Intermediate College,    

Muzaffarnagar, U.P., India (1st division; distinction in Physics, Chemistry and 

Mathematics; ranked 7th in statewide exams; too young for IIT)

1967   Bachelor of Science: S.D. College, Muzaffarnagar, U.P., India; College 

affiliation—Agra University, now Meerut University (1st division; distinction in

Physics, Chemistry, and Math; graduated at the top of the class; Chancellor’s Medal)

1970   Bachelor of Engineering (with Distinction), Electrical Technology

Indian Institute of Science, Bangalore, India (graduated at the top of the class; 

recipient of Hay Medal)

1960s (Formative Years)

*has grown old now (born 15 Dec 1949), but debatable if he ever grew up! Source: Personal archives and Internet

…a lad was growing up* completely oblivious to it all!

Oct 4, 1957

Mid 1950s

1950s
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1970 - 1972

• Master of Engineering (with Distinction), Aeronautical Engineering

Indian Institute of Science, Bangalore, India

1972 - 1976

• Ph.D., Aerospace Engineering

Georgia Institute of Technology, Atlanta, Georgia, USA

• Advisor: Dr. Robin B. Gray 

• Dissertation: A Method of Computing the Potential Flow 

on Thick Wing Tips

• Advisor: Dr. Suresh M. Deshpande

• Project: Numerical Determination of Periodic Solutions for Gravity 

Gradient Stabilized Satellites 

o First exposure to FORTRAN programming & computer codes

 Integrated two coupled 1st order ODEs 

 Used IBM 360/44 for processing

o Developed LPM using surface vorticity distribution

 Vorticity strength determined using iterative procedure;  

avoided inverting large ill-conditioned matrices

 CDC Cyber 70/74 NOS 1.1-419/420 

o 2-D results in AIAA Journal of Aircraft, 15 (10), 1978

o 3-D results in AIAA Journal of Aircraft, 16 (3), 1979

Source: Refs. 5.1.56 & 5.1.57; images from internet

1970s (Young Adult Years) 

A Budding Aerospace Engineer in the ‘70s



17 Copyright © 2020 by Pradeep Raj.  All Rights Reserved.

L6

1976 - 1978

• Research Assistant Professor, Aerospace Engineering, 

Iowa State University, Ames, Iowa

• Raj conducted computational investigations to 

complement experimental research of Steve Brandt

 Immensely fortunate to have a chance to work with, and learn from, 

Dr. Joseph L. Steger—a CFD pioneer, a professional, and a 

gentleman—at NASA-Ames Research Center

 Experienced the challenge of simulating vortical flows using zero, 

one, and two equation turbulence models in Steger & Kutler’s

implicit finite-difference procedure for computation of vortex wakes

1978 - 1979

• Assistant Professor, University of Missouri-Rolla

• Taught Undergraduate courses: Fluid Mechanics, 

Thermodynamics, and Heat Transfer 

CFD Pioneer

NASA Ames, Stanford, 

Univ. of California-Davis

(1944-1992)

Source: Refs. 5.1.58 to 5.1.60

• NASA-Ames sponsored project: Alleviation of wake-vortex 

hazard through merging of co-rotational vortices 

• Principal Investigator: Dr. James D. Iversen

1979

• Sr. Aerodynamics Engineer, Computational Aerodynamics Group, 

Lockheed-California Co., Burbank, California

• Group Engineer: Mr. Luis R. Miranda

Entrée into the “World of CFD”!

Joseph L. Steger
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First Day on the Job: May 1979

Dr. A. Richard Seebass (University of Arizona, Tucson) 

visits Lockheed in Burbank!

• Raj assigned to work with Dick Seebass on shock-free supercritical 

wing design procedure using fictitious gas concept [motivation: 

wing design for future L-1011-500 aircraft]

• Results using FLO-22 in AIAA Paper 81-0383; also in AIAA Journal of 

Aircraft, 19(4), 1982 

Renowned Aerodynamicist 

and Educator

(1936-2000)

M∞ = 0.8

CL = 0.63

Inviscid Drag 

reduced by ~35% 

Source: Ref. 5.1.40

Overnight Immersion into Transonic Aerodynamics! 

A. Richard Seebass
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The Strange Seventies!

• “The Great Boeing Bust”
o Business

 1969: Introduced now iconic B747

 1970-71: Not a single new order from any U.S. airline for 17 months

 1971: SST program cancelled by U.S. Government

o Workforce

 32,500 employees by late 1971—down from about 80,000 in 1969

 “Optimists brought lunch to work, pessimists left the car running 

in the parking lot”  

• Few Exciting Endeavors!
o 1970: Pan Am 747 NY–London  service

o 1970: First operational C-5A Galaxy 

o 1975: New starts: GD F-16 and MDC F/A-18

o 1976: Concorde entered service

Image Source: Internet

• Rolls-Royce Bankruptcy
o 1971: Could not proceed with RB-211 engine for Lockheed’s L-1011 Tristar

 Cost of each engine increased by 30% over fixed-price contract estimate 

 Additional $360 million required to put the new engine into production

• “The Lockheed Debacle”
o 1969-71: C-5 Galaxy cost overruns and serious wing design issues

o 1971: Saved from bankruptcy by U.S. Congress approval of 

$250 million ‘Loan Guarantee’

o 1974: Stock Price drops to a Low of 33/8 (High of 737/8 in 1967!)

o 1976: Foreign Bribery Scandals for sale of aircraft to Japan, Italy, 

Saudi Arabia, The Netherlands; top management resigned in disgrace
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At the End of the 1970s

It’s difficult to make predictions, especially about 

the future. – Anon.

Computer requirements for steady-flow 

simulation: 1-hour run using 1978 algorithms

Source: Ref. 5.1.53 & 5.1.54

Computational Aerodynamics Development and Outlook
DEAN R. CHAPMAN, Director of Aeronautics, 

NASA Ames Research Center, Moffett Field, California

AIAA Journal, Vol 17, No.12, Dec 1979

“AIAA Dryden Lectureship in Research”

8 Mar 1922 – 4 Oct 1995
Prof. Emeritus Stanford University

Outlook didn’t quite pan out!
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