



# Air Vehicle Design AOE 4065 – 4066

#### III. Air Vehicle Design Fundamentals

#### **Course Module A10**

Preliminary Design: Refine & Validate Baseline Design

#### Kevin T. Crofton Department of Aerospace and Ocean Engineering Blacksburg, VA



#### AOE 4065-4066:

#### Capstone Air Vehicle Design (AVD) Course Modules (CMs)

#### **Overview of AVD Courses**

#### I. Foundational Elements

- F1. Design: An Engineering Discipline
- F2. Systems and Systems Thinking
- F3. Basics of Systems Engineering
- F4. Decision Making with Ethics and Integrity

II. Air Vehicle Design Fundamentals

A1. Purpose & Process

#### **Conceptual Design**

- A2. Understand the Problem
- A3. Solve the Problem
- A4. Initial Sizing: Takeoff Weight Estimation
- A5. Initial Sizing: Wing Loading and Thrust Loading Estimation
- A6. Cost Considerations
- A7. Concept to Configuration: Key Considerations
- A7A. Configuration Layout: Drawings & Loft

#### **Conceptual & Preliminary Design**

- **A8. Trade Studies**
- A9. Use of Software Tools
- A10. Preliminary Design: Baseline Design Refinement & Validation

#### III. Project Management Topics

- P1. Basics of Project Management and Project Planning
- P2. Project Organization
- P3. Roles & Responsibilities of Team Members
- P4. Project Execution: Teamwork for Success
- P5. Project Risk Management
- P6. Delivering Effective Oral Presentations
- **P7. Writing Effective Design Reports**

13 August 2024



## <u>Disclaimer</u>

Prof. Pradeep Raj, Aerospace and Ocean Engineering, Virginia Tech, collected and compiled the material contained herein from publicly available sources solely for educational purposes.
Although a good-faith attempt is made to cite all sources of material, we regret any inadvertent omissions.



# **CRUCIALLY IMPORTANT**

CMs only introduce key topics and highlight some important concepts and ideas...but without sufficient detail. We must use lots of Reference Material\* to add the necessary details! (\*see Appendix in the Overview CM)



## Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Integrated System
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance
- A10.10 Cost & Manufacturing



You Generate a More Mature Design in AOE 4066

TRL: Technology Readiness Level

13 August 2024

**Baseline Design in** 

AOE 4065



#### **Capstone Air Vehicle Design Project**

#### The First Day!





The Last Day of



130 ft



# Baseline Design: Recap

We estimated values of parameters for the Baseline Design or the

Preferred System Concept based on many *simplifying assumptions* 

- Initial  $W_{TO}$  Sizing
  - *Empty Weight*: Historical trends for our class of aircraft
  - Fuel Weight: Assumed/estimated values of several parameters
    - AR, (L/D)<sub>max</sub> or C<sub>D0</sub>
    - Cruise and/or loiter speed,  $V_{cr}$  or  $V_{lo}$ ; altitude,  $h_{cr}$  or  $h_{lo}$ ; and *tsfc* or *bsfc* for the cruise or loiter mission phases
- Initial  $(W/S)_{TO}$  and  $(T/W)_{TO}$  Estimation
  - Feasible Design Space (or Domain): Used approximate form of vehicle performance equations to define a Design Space
  - Selected more parameters, such as,  $C_{Lmax}$ ,  $V_{TO}$ , ROC, etc.
- Empennage Sizing
  - Used empirical values of Tail Volume Coefficients
- Component Weights & System Cost
  - Used parametric and empirical relationships
- **Etc., Etc.**

Baseline Design Has Low Level of Maturity (TRL ~ 2-3)



### Baseline Design Needs Refinement & Validation

- Validate <u>all</u> assumptions and parameter values used to create your feasible Baseline Design
  - If the assumptions turn out to be flawed or the parameter values wrong, you may not necessarily have a feasible design, do you?
- Tweak the design to conform to the validated parameters while constantly making sure that the design is feasible
- Develop a project plan that integrates inputs from all sub-teams and disciplines
  - Each sub-team should prepare a list questions that need to be answered.
     For example,
    - What assumptions/ parameters need to be validated? These lead to tasks
    - How do we validate? Defines scope of a task based on desired output
    - <u>When</u> do we need to complete each task? *Defines schedule and milestones*
    - <u>Who</u> else needs the results? *Defines dependencies for scheduling tasks*
  - Each sub-team should prepare a Gantt chart for their own tasks; all subteam charts then roll up into full project level Gantt chart

## Refined Design Has Higher Level of Maturity (TRL ~ 4-5)



**AOE 4065** 

**Initial Sizing** 

- TOGW = Empty Weight
  - + Fuel Weight

+ Fixed (Payload) Weight

<sup>se</sup>Iop down<sup>ss</sup> Estimation of TOGW and its constituents including empty weight Validation Example 1 **Empty Weight** 

**AOE 4066** 

#### **Empty Weight =** $\sum$ **Component Weights**

- Airframe Structure: wing, fuselage, tail, landing gear,...  $\checkmark$
- Propulsion: engine, inlet, fuel system, engine controls,  $\checkmark$ and thrust reversers
- Control system: hydraulic, pneumatic, actuators, ...  $\checkmark$
- <sup>ce</sup>Bottoms up<sup>99</sup> Instruments  $\checkmark$
- Electrical system Analysis of the baseline
- Furnishings design to validate estimated
- Avionics  $\checkmark$
- empty weight Air-conditioning and anti-icing
- Other: drag chutes, etc.

Get precise estimates of CG and Moments of Inertia based on component locations

#### Change in CG affects all subteams!!



- Known weights
- Direct weight estimates •
- Statistical weight estimates



In case you missed it...

"...estimation of the aircraft empty weight is the weakest part of the conceptual design process and it has tremendous leverage on the aircraft takeoff weight. It is almost impossible to estimate the empty weight of something that has not been built...However, it is important to press on or aircraft will never be designed." -- Lee Nicolai

That is why we start with a "Top Down" approach and end with "Bottoms up".

Source: Chapter 5, Ref. 1, (Nicolai & Carichner);



## Validation Example 2 Aerodynamics

# Aerodynamics subteam should review their R&Rs, and any project data deliverables in the RFP

- Identify all parameters that need to be validated and approaches
- $\circ$  Let us consider one of the parameters,  $C_{D0}$ 
  - Do we need to validate the assumed value of  $C_{D0}$ ?
    - ✓ Yes!
  - How will we validate  $C_{D0}$ ?
    - $\checkmark$  Use analysis and testing methods
    - ✓ Research relevant reference material for applicable methods
      - Options include (a) Drag Build-up method which sums up individual component parasitic drag values to estimate aircraft zero-lift drag; or (b) computational methods, such as, FRICTION or VSPAero or some other code to analyze the baseline design; or...
    - Select some or all methods based on available resources and constraints!
- Investigate other parameters, such as, AR,  $S_{ref}$ ,  $(L/D)_{max}$ ,  $C_{Lmax}$ , etc.



#### "Just because you can doesn't mean you should."

#### 1. Understand Customer's Problem

 Develop a comprehensive understanding of the scope of customer needs (potential impact of solution, desired level of accuracy, type and amount of data, etc.) and constraints (cost and schedule)

#### 2. Devise a Practical Approach to Solving the Problem

- Examine available computational simulation codes for solving your problem with *effectiveness* as the key measure of merit
- Choose a code based on your understanding of the problem [the type, amount and quality of aerodynamic data required to meet customer needs subject to the specified constraints]

#### 3. Deliver a Best Solution that Adds Value

Provide a solution that *best* meets customer needs while satisfying all constraints

#### Don't Use a Hammer When You Need a Screwdriver!



## Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



# A10.2 Configuration Layout and Loft

Configuration Layout and Loft subteam members should review their R&Rs, and any project data deliverables in the RFP



#### Three-view Drawing of RC Airplane: A Good Example Using SAE Specs



16 CM A10

13 August 2024



## Final Configuration Layout: A Transport Aircraft Example



| Aircraft Specifications |         |  |
|-------------------------|---------|--|
| Max. TOGW (lbs)         | 453,156 |  |
| Seat Capacity           | 400     |  |
| Design Range (nm)       | 3,500   |  |
| Max. Climb Rate (fpm)   | 5,500   |  |
| Cruise Mach No.         | 0.78    |  |
| Cruise Altitude (ft)    | 40,000  |  |
| Service Ceiling (ft)    | 43,500  |  |





#### An Example to Emulate: Cal Poly SLO Student Team Project

#### Cut-Away View of the C-86 Amarok





## An Example to Emulate: Cal Poly SLO Student Team Project



Source: 2010 AIAA Undergrad Team Competition Winner, Cal Poly, SLO



#### Aircraft Structure & Systems Layout Student Design Project Example to Emulate



13 August 2024



# **Configuration Layout and Loft**

#### **Recommended Reading for Topics in Configuration Layout and Loft**

| Торіс                                | Recommended References                          |
|--------------------------------------|-------------------------------------------------|
| Configuration Layout and Loft        |                                                 |
| Configuration Layout and Loft        | Chapter 7, Raymer, Ref. AVD 2                   |
| Aircraft Design Aid and Layout Guide | All chapters, Kirschbaum with Mason, Ref. AVD 6 |



## Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



# A10.3 Aerodynamics

#### Aerodynamics subteam members should review their R&Rs, and any project data deliverables in the RFP



# **Role of Aerodynamicist**

## AIAA-82-0315: An Excellent Reference

- o 40 years "new"
- Highly relevant—just replace
   "Tactical-Missile" with Aircraft!
- A copy is in the Aerodynamics
   subfolder on Canvas
- Aerodynamicists help ensure that aircraft delivers targeted flight performance. Period.

AIAA-82-0315 The Changing Role of the Aerodynamicist in Tactical-Missile Design D.R. Carlson, Hughes Aircraft Co., Canoga Park, CA



### AIAA 20th Aerospace Sciences Meeting

🖞 January 11-14, 1982/Orlando, Florida

"They own OML (Outer Mold Line)" – Lee Nicolai



## **Trade Studies**

Empty

Mass

Fuel

Mass









**Trade Studies** 





# **Aerodynamic Coefficients**

#### Estimate Key Non-dimensional Parameters



 $q = Dynamic Pressure = \frac{1}{2}\rho V^2$ 

Reference Areas and Lengths Are Just That — *References* 

#### • Accurate $C_L$ estimation is relatively easy; $C_D$ and $C_m$ not so!



## Broad Categorization of Configuration Aerodynamic Drag





## Zero-lift Drag Build-up

#### **Example: Atlas**



| Zero Lift Drag Build-up On Aircraft |         |  |
|-------------------------------------|---------|--|
| Component                           | CD0     |  |
| Main Wing                           | 0.00507 |  |
| Body                                | 0.00855 |  |
| Vertical Tail                       | 0.00065 |  |
| Horizontal Tail                     | 0.00095 |  |
| All Engines                         | 0.00164 |  |
| Total:                              | 0.01686 |  |
| Initial Sizing:                     | 0.017   |  |

Source: 2023-24 AIAA Heavy Lift Mobility Platform: VT Aero Sub-team Lead: Durgin)

13 August 2024



## **Drag Polars**



**Cambered Wings** 



**Uncambered Wings** 

$$C_D = C_{D_0} + K C_L^2$$

$$C_{D_0} = C_{D_{\min}}$$





## Aerodynamics

#### **Recommended Reading for Topics in Aerodynamics**

| Торіс                                        | Recommended References                                                           |
|----------------------------------------------|----------------------------------------------------------------------------------|
| Aerodynamics                                 |                                                                                  |
| Review of Practical Aerodynamics             | Chapter 2, Nicolai & Carichner, Ref. AVD 1                                       |
| Selecting the Planform and Airfoil Selection | Chapter 7, Nicolai & Carichner, Ref. AVD 1                                       |
| High-Lift Devices                            | Chapter 9, Nicolai & Carichner, Ref. AVD1                                        |
| Estimating Wing-Body Aerodynamics            | Chapter 13, Nicolai & Carichner, Ref. AVD 1                                      |
| Aerodynamics                                 | Chapter 12, Raymer, Ref. AVD 2 in PR                                             |
| Wing Design                                  | Chapter 5, Sadraey, Ref. AVD 5                                                   |
| The Anatomy of the Wing                      | Chapter 9, Gudmundsson, AVD 4                                                    |
| Aircraft Drag Analysis                       | Chapter 15, Gudmundsson, Ref. AVD 4                                              |
| Aircraft Drag                                | Chapter 9, Kundu, Ref. AVD 8                                                     |
| Aircraft Drag and Wing Design                | See Aerodynamics folder in Supplemental Reference Material folder on course site |



## Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics

#### A10.4 Aeropropulsion Integration

- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



# A10.4 AeroPropulsion Integration

Aeropropulsion Integration subteam members should review their R&Rs, and any project data deliverables in the RFP



# **Propulsion System Types**

Two main options to produce forward thrust

#### 1. Propellers

- Powered by reciprocating piston engines, gas turbines (<u>turboprops</u>), or electric motors
- Keeping tip speed less than sonic restricts practical use to flight speeds < 500 kt</li>

#### 2. Jet Engines

- Variants include <u>turbojets</u>; afterburning turbojets; and <u>turbofans</u>
- Can operate supersonically to Mach 3.5





## **Onboard Propulsive Efficiency Chains**



**35** CM A10

13 August 2024



## Turbine Engine Selection Considerations

- Choose a suitable engine that can supply the required thrust
- Realistic propulsion expectations are essential
  - New engines built from scratch are VERY (VERY, VERY, VERY) expensive
    - Deciding to use a 'rubber' engine should take this real cost into account
  - Much of your load is fuel, so you better know how your engine will perform to justify fuel load
  - Real engines have real dimensions, (dry) weights, mass flow rates, inlet and exhaust flow effects, and noise
  - Use extensive engine databases for availability, performance, cost, etc.
- Sometimes new airframes do require new engines to meet stringent efficiency and emissions requirements
  - New technologies enable engines with (i) lean combustion for low Nox; (ii) high-temperature turbine materials for efficiency; (iii) transonic compressor/turbine designs; (iv) noise reducing inlets and exhausts


### Turbine Engine Performance Modeling

Aircraft designers in industry obtain "Engine Decks" built by engine manufacturers that provide engine performance data (thrust, fuel flow, mass flow, pressures and temperatures at specified stations) for a wide range of Mach numbers and altitudes in the flight envelope, sorted by throttle setting



"Engine Decks"--the best performance model!

13 August 2024

Source: Ref. AVD 1 (Nicolai & Carichner)



### Turbine Engine Performance Modeling



Source: Ref. AVD 1 (Nicolai & Carichner)



### **Turbine Engine Inlets**

- Purpose: To slow down oncoming air to speeds suitable for combustion
  - Typical target Mach number is 0.4 to 0.6 at the compressor face





Cruising speed

#### Design Criteria

- o Deliver engine air with minimum distortion
- o Maximize pressure recovery
- Minimize spillage drag throughout the flight regime
- Minimize losses due to flow separation

Installed Performance Greatly Depends Upon Inlet Design

 Strongly recommend looking at Sect. 10.3, Ch. 10, PS 1 (Mattingly) and Sect. 7.3.4, Ch. 7, AVD 4 (Gudmundsson)

**39** CM A10



### **Turbine Engine Nozzles**

#### Typical Nozzle Types





### **Turbine Engine Nozzles**

#### Required Nozzle Geometry Variation During Flight



#### Make sure to account for engine installation losses (See Ch. 16 in AVD 1, and also look at AVD 2)



### **Hybrid-Electric Power Train Options**

- Powered by both Batteries (Electrical Energy) and Fossil Fuel
  - Several options for integrating fossilfuel engines with electric motors
  - $\circ~$  All reduce emissions and fuel burn
  - Potential reduction in total energy consumption and total energy cost:
    - ✓ Jet-A: ~\$5 per gallon
    - Electricity: ~\$1.2 per equivalent gallon









Variable pitch controller

### Propulsive Efficiency of a Hybrid Electric (HE) System



https://canvas.vt.edu/courses/143566/files/folder/Project%20Report%20(Spring)/Winning%20Reports%20-%20Past%20Years/VT%20AOE%20Prize%20for%20Excellence?preview=21392423



### **Electric Motors**

- Simple and Reliable (design life of 30,000 hrs. when operated at ~60% rated power)
- Typical specific power: 3 to 5 hp/lb

 Table 14.2
 Electric Aircraft System Data (2010)

| Characteristic               | Electric Motor | Solar Cell | Fuel Cell           | Batteries           |
|------------------------------|----------------|------------|---------------------|---------------------|
| Specific energy<br>(kW·h/lb) | 0.2ª           | NA         | 0.89 <sup>b,c</sup> | 0.27 <sup>c,d</sup> |
| Design life                  | 30,000 h       | е          | NA                  | 300 <sup>f</sup>    |
| Efficiency (%) <sup>g</sup>  | 97             | 28         | 55                  | 90                  |
| Installed weight (Ib/ft²)    | NA             | 0.1        | NA                  | NA                  |

"Weight includes motor, controller, and propeller. Increase weight by 25% for installation.

<sup>b</sup>H<sub>2</sub>/O<sub>2</sub> regenerative fuel cell using proton exchange membrane technology.

<sup>c</sup>Specific power based on discharge time.

<sup>d</sup>Li–S batteries are projected to increase to 0.336 kWh/lb by 2015.

<sup>e</sup>Solar cells degrade about 1.5% of power output per year.

<sup>1</sup>300 full-depth discharges in 2010. Decreasing the discharge to 50% would increase number of recharges to approximately 1000.

<sup>9</sup>Efficiency is energy out per energy in. Solar cell efficiency is projected to increase to 32% and fuel cell efficiency to 65% by 2015.



### **Battery Characteristics**

| Battery Type                      | Theoretical<br>Specific Energy,<br>W-hr/kg | Practical<br>Specific<br>Energy,<br>W-hr/kg | Specific<br>Power,<br>W/kg | Cell<br>Voltage,<br>V |
|-----------------------------------|--------------------------------------------|---------------------------------------------|----------------------------|-----------------------|
| Lead acid<br>(Pb/acid)            | 170                                        | 30-50                                       | 180                        | 1.2                   |
| Nickel<br>cadmium<br>(NiCd)       | 240                                        | 60                                          | 150                        | 1.2                   |
| Nickel metal<br>hydride<br>(NiMH) | 470                                        | 23-85                                       | 200-400                    | 0.94-1.2              |
| Lithium ion<br>(Li-Ion)           | 700                                        | 100-135                                     | 250-340                    | 3.6                   |
| Lithium<br>polymer<br>(Li-Po)     | 735                                        | 50.7–220                                    | 200-1900                   | 3.7                   |
| Lithium sulfur<br>(LiS)           | 2550                                       | 350                                         | 600-700                    | 2.5                   |



### **Battery Specific Energy & Density**

|                     | Typical Values     |           |           |                                             |                         |
|---------------------|--------------------|-----------|-----------|---------------------------------------------|-------------------------|
|                     | Chemistry          | (Wh/kg)   | (Wh/L)    | Name                                        | Notes                   |
| old                 | Lead-acid          | 45        | 100       | Lead acid                                   | automotive              |
|                     | Alkaline           | 100       | 300       | Alkoline                                    | flashlights             |
| Nickel              | NiFe               | 25        | 30        | Nickel Iron                                 | locomotives, mining     |
|                     | NiCd               | 60        | 150       | Nickel Cadmium                              | classic "NiCad"         |
|                     | NiH                | 75        | 60        | Nickel, Hydrogen                            | space probes            |
|                     | NiMH               | 90        | 300       | Nickel Metal Hydride                        | replaced NiCad          |
|                     | NiZn               | 100       | 280       | Nickel Zinc                                 | automobile, electronics |
| Li-ion <sup>1</sup> | Li-ion             | 100-265   | 250-700   | Lithium ion                                 | generic term            |
|                     | Li-ion Polymer     | 100-265   | 250-730   | Lithium Polymer                             | polymer electrolyte     |
|                     | LiCoO2             | 200       | -         | Lithium Cobalt Oxide                        | handheld electronics    |
|                     | LiFePO4            | 120       | 170       | Lithium Iron Phosphate                      | tools, vehicles         |
|                     | LiMn2O4            | 150       | -         | Lithium Manganese Oxide                     | laptops, medical equip  |
|                     | LiNiMnCoO2         | 260       | 500       | Lithium Nickel Manganese Cobalt Oxide (NMC) | aircraft, road vehicles |
|                     | LIS                | 400       | 250       | Lithium Sulfur                              | aircraft, road vehicles |
|                     | LiS (2020)         | 500       | 1000      | Licerion <sup>2</sup> (LiS)                 | aircraft, road vehicles |
|                     | Li titonote        | 90        | 170       | Lithium Titanate                            | high power/low energy   |
|                     | Li-air             | 600       | 200       | Lithium-Air                                 | experimental            |
| misc                | Na-ion             | 150       | 50        | Sodium Ion                                  | laptops, bikes          |
|                     | Molten salt        | 220       | 290       | Molten salt                                 |                         |
|                     | Silver Zinc        | 200       | 700       | Silver Zinc                                 | laptops, hearing aids   |
| Comparisons         | Wood               | 4500      | 3600      | Wood                                        | it floots               |
|                     | Coal               | 8000      | 10000     | Coal                                        | it smells               |
|                     | Jet Fuel           | 11000     | 10000     | Jet Fuel                                    | love that smell         |
|                     | Gasoline           | 12000     | 9000      | Gasoline                                    | too expensive           |
|                     | LH2                | 39406     | 2790      | Liquid Hydrogen                             | too cold                |
|                     | Uranium            | 2.2E + 10 | 4.3E + 11 | Uranium                                     | too scary               |
|                     | Antimatter $(c^2)$ | 9.0E + 10 |           | Antimatter                                  | beam me up              |

<sup>1</sup> Lithium-ion is a generic term for various batteries in which lithium ions move to the positive electrode during discharge.
 <sup>2</sup> Licerion is Scion Power's trade name for its patenled rechargeable lithium sulfur battery planned to enter production in late 2018.

Copyright ( 2018 by D. Raymer All Rights Reserved.



### **Propeller Performance**

(Sect. 14.3 and 14.4, Ch. 14, AVD 4 Gudmundsson)

#### Propeller performance characterized by propeller efficiency and several coefficients:

Sample Propeller Efficiency Map

 $\frac{60 \cdot V_0}{RPM \cdot D}$ 

Propeller efficiency:



#### **Note: See CM A7 for Generic Propeller Maps**

13 August 2024



### **AeroPropulsion Integration**

#### **Recommended Reading for Topics in Aeropropulsion Integration**

| Торіс                                            | Recommended References                                                  |  |
|--------------------------------------------------|-------------------------------------------------------------------------|--|
| AeroPropulsion Integration                       |                                                                         |  |
| Propulsion System Fundamentals                   | Chapter 14, Nicolai & Carichner, Ref. AVD 1                             |  |
| Turbine Engine Inlet Design                      | Chapter 15, Nicolai & Carichner, Ref. AVD 1                             |  |
| Corrections for Turbine Engine Installation      | Chapter 16, Nicolai & Carichner, Ref. AVD 1                             |  |
| Propeller Propulsion Systems                     | Chapter 17, Nicolai & Carichner, Ref. AVD 1                             |  |
| Propulsion System Thrust Sizing                  | Chapter 18, Nicolai & Carichner, Ref. AVD 1                             |  |
| Propulsion                                       | Chapter 13, Raymer, Ref. AVD 2                                          |  |
| Propulsion and Fuel System Integration           | Chapter 10, Raymer, Ref. AVD 2                                          |  |
| Propulsion System Design                         | Chapter 8, Sadraey, Ref. AVD 5                                          |  |
| Selecting the Power Plant                        | Chapter 7, Gudmundsson, Ref. AVD 4                                      |  |
| The Anatomy of the Propeller                     | Chapter 14, Gudmundsson, Ref. AVD 4                                     |  |
| Aircraft Power Plant and Integration             | Chapter 10, Kundu, Ref. AVD 8                                           |  |
| DEP, Hybrid Electric, Propellers and Open Rotors | See API folder in Supplemental Reference Material folder on course site |  |



### Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



### A10.5 Vehicle Performance

# Vehicle Performance subteam members should review their R&Rs, and any project data deliverables in the RFP



### Importance of the Role of Vehicle Performance Team

- Predict flight performance for all segments of the mission using appropriate analyses and simulations
- If actual flight performance differs from predictions, adverse project risks include:
  - Loss of Credibility
    - "Cannot Deliver What Was Promised"
  - Potential for Schedule Slip and Additional Cost
    - Flight Test "Surprises" → Schedule Slips and Additional Costs due to Design Modifications
  - Dissatisfied Customer
    - Do Not Like Out-of-Spec Product or Late Delivery or Increased Cost

### Mitigate Risk Through Design, Analysis, and Test



### Flight Performance: Take-off

$$V_{\rm TO} = 1.2 V_{\rm stall} = 1.2 \sqrt{\frac{W_{\rm TO}}{S_{\rm ref}}} \frac{2}{\rho C_{L_{\rm max}}}$$

$$S_G = \frac{1.44 \left( W/S_{\text{ref}} \right)_{\text{TO}}}{g \rho C_{L_{\text{max}}} \left[ \left( T/W \right) - \left( D/W \right) - \mu \left( 1 - L/W \right) \right]}$$

$$\begin{split} D &= (0.5)\rho V^2 S_{\text{ref}} \left[ C_{D_0} + \Delta C_{D_{\text{flap}}} + \Delta C_{D_{\text{gear}}} + K C_{L_G}^2 \right] \\ L &= (0.5)\rho V^2 S_{\text{ref}} C_{L_G} \end{split}$$

 $V = 0.707 V_{\rm TO}$ 

$$S_R = 2V_{\rm TO}$$

$$S_{\rm TR} = R \sin \theta_{\rm CL}$$

$$R = \frac{V_{\rm TO}}{0.15 g}$$

1.00

Rate of climb =  $V_{\text{TO}} \sin \theta_{\text{CL}}$ 



Assumption: unaccelerated climb

Wet grass

Snow- or ice-covered field

## See Sect. 10.3, Ch. 10, AVD 1, for more details and recommended values of parameters



**Brakes Off, Average** Brakes Fully Applied, **Ground Resistance** Average Wheel-Braking Type of Surface Coefficient Coefficient Concrete or macadam 0.015-0.04 0.3-0.6 Hard turf 0.05 0.4 Firm and dry dirt 0.04 0.30 Soft turf 0.07 0.5 Wet concrete 0.05 0.2

0.10

0.01

**52** CM A10

13 August 2024

0.2

0.07-0.10



### Flight Performance: BFL

#### 1. BFL Estimation\*

$$\begin{split} \mathrm{BFL} &= \frac{0.863}{1+2.3G} \left( \frac{W/S}{\rho g C_{L_{\mathrm{climb}}}} + h_{\mathrm{obstacle}} \right) \left( \frac{1}{T_{\mathrm{av}}/W - U} + 2.7 \right) \\ &+ \left( \frac{655}{\sqrt{\rho/\rho_{\mathrm{SL}}}} \right) \end{split}$$

Jet:

$$T_{\rm av} = 0.75 \ T_{\rm takeoff} \begin{bmatrix} 5 + {\rm BPR} \\ 4 + {\rm BPR} \end{bmatrix}$$
  
static

1

Prop:

$$T_{\rm av} = 5.75 \text{ bhp} \left[ \frac{(\rho/\rho_{\rm SL}) N_e D_p^2}{\text{bhp}} \right]^{\frac{1}{3}}$$

BFL = balanced field length (ft)

 $G = \gamma_{\text{climb}} - \gamma_{\text{min}}$   $\gamma_{\text{climb}} = \arcsin \left[ (T-D)/W \right], 1 - \text{engine-out, climb speed}$   $\gamma_{\text{min}} = 0.024$  2-engine; 0,027 3-engine; 0.030 4-engine  $C_{L_{\text{climb}}} = C_L$  at climb speed (1.2  $V_{\text{stall}}$ )

 $h_{\rm obstacle} = 35$  ft commercial, 50 ft military

 $U = 0.01 C_{L_{max}} + 0.02$  for flaps in takeoff position BPR = bypass ratio

bhp = engine brake horsepower

 $N_e$  = number of engines

 $D_p = \text{propeller diameter (ft)}$ 

#### 2. More Accurate BFL Estimation\*\*

- $\circ$  Assume failure recognition speed V<sub>EF</sub>
- $\circ$  Calculate LAB: accelerate to V<sub>EF</sub>, free roll for 3 sec., brake to full stop
- Calculate LAC: accelerate to V<sub>EF</sub>, continue OEI takeoff over 35 ft. obstacle
- Estimate refusal speed,  $V_{EF}$ , when LAB = LAC



#### \*See Sect. 17.8, Ch. 17, AVD 2 \*\*See Sect. 10.6, Ch. 10, AVD 1



### Flight Performance: Climb

• Rate of Climb (ROC)

$$V \sin \gamma = \frac{P_S}{1 + (V/g)(dV/dh)}$$
$$P_S = \frac{dh_e}{dt} = \frac{V \Big[ T \cos(\alpha + i_T) - D \Big]}{W}$$

Constant Speed Climb

$$V\sin\gamma = \frac{V\left[T\cos\left(\alpha + i_T\right) - D\right]}{W}$$

- Best ROC (maximum vertical velocity)
  - o Jet aircraft

$$V = \sqrt{\frac{W/S}{3\rho C_{D_0}}} \left[ T/W + \sqrt{(T/W)^2 + 12C_{D_0}K} \right]$$

- Best Angle of Climb (maximum γ)
  - o Jet aircraft

$$V = \sqrt{\frac{2W}{\rho S} \sqrt{\frac{K}{C_{D_0}}}}$$



Assumption: all angles are small

#### • Propeller aircraft

$$V = V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

- Propeller aircraft
  - 85-90% of best ROC speed is a good estimate

#### See Ch. 3, AVD 1, and Ch. 17, AVD 2 for more details



### Flight Performance: Descent

Gliding Flight (T = 0)

 $\gamma = \arcsin\left(-D/W\right)$ 

$$\gamma = \arctan\left(-D/L\right)$$

• Maximum Range (minimum γ,

$$V = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{C_{D_0}}}$$

• Maximum Endurance (minimum rate of descent, ROD)

$$V_{\rm ROD_{min}} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

#### See Ch.3, AVD 1 (Nicolai & Carichner), for more details



### Flight Performance: Landing

$$S_A = \frac{L}{D} \left[ \frac{V_{50}^2 - V_{\text{TD}}^2}{2g} + 50 \right]$$

 $V_{50} = 1.3 V_S$   $V_{TD} = 1.15 V_S$ 

 $L = W_L$  = aircraft weight with 1/2 fuel remaining

 $C_{L_{\text{land}}} = C_{L_{\text{max}}}$  for flaps in landing configuration

$$V_{50}$$

$$V_{TD}$$

$$V=0$$

$$V=0$$

$$S_{A} \rightarrow S_{FR} = S_{B} \rightarrow V$$

$$C_{D} = C_{D_{0}} + KC_{L_{\text{max}}}^{2} + \Delta C_{D_{\text{flaps}}} + \Delta C_{D_{\text{gear}}}$$

 $S_A = 50/\tan \theta_{app}$ ,  $\theta_{app} = approach glide slope (3 deg for typical CTOL, 7 deg for STOL)$ 

$$S_{\rm FR} = 3V_{\rm TD} \qquad S_B = \frac{W_L}{g\mu\rho S_{\rm ref} \left[ (C_D/\mu) - C_{LG} \right]} \ln \left[ 1 + \frac{\rho}{2} \frac{S_{\rm ref}}{W_L} \left( \frac{C_D}{\mu} - C_{LG} \right) V_{\rm TD}^2 \right]$$

$$C_{D} = C_{D_{0}} + KC_{L_{G}}^{2} + \Delta C_{D_{\text{flaps}}} + \Delta C_{D_{\text{gear}}} + \Delta C_{D_{\text{misc}}} + \Delta C_{D_{\text{spoilers}}}$$

Assumptions:

Neglect reverse thrust

Zero forward thrust

| Type of Surface            | Brakes Off, Average<br>Ground Resistance<br>Coefficient | Brakes Fully Applied,<br>Average Wheel-Braking<br>Coefficient |
|----------------------------|---------------------------------------------------------|---------------------------------------------------------------|
| Concrete or macadam        | 0.015-0.04                                              | 0.3–0.6                                                       |
| Hard turf                  | 0.05                                                    | 0.4                                                           |
| Firm and dry dirt          | 0.04                                                    | 0.30                                                          |
| Soft turf                  | 0.07                                                    | 0.5                                                           |
| Wet concrete               | 0.05                                                    | 0.2                                                           |
| Wet grass                  | 0.10                                                    | 0.2                                                           |
| Snow- or ice-covered field | 0.01                                                    | 0.07-0.10                                                     |

## See Section 10.4, AVD 1, for more details and recommended values of parameters

**56** CM A10

13 August 2024



### Flight Performance: Cruise & Loiter

Level unaccelerated flight of symmetric aircraft with uncambered wing

$$W \approx L = C_L qS$$
  $T \approx D = \left(C_{D_0} + K C_L^2\right) qS$ 

$$\frac{T}{W} = \frac{1}{L/D} = \frac{qC_{D_0}}{(W/S)} + \left(\frac{W}{S}\right)\frac{K}{q}$$

Required Thrust and Power

 $T_R = D = C_{D_0} q S + K W^2 / q S$ 

$$P_R = DV = T_R V = \left(C_{D_0} + K C_L^2\right) \frac{W}{C_L} \sqrt{\frac{2W}{\rho C_L S}}$$

Range

$$R = \frac{V}{C} \frac{L}{D} \ln \left[ \frac{W_i}{W_f} \right]$$

- <u>Jet</u> aircraft
  - Most Efficient cruise occurs near  $L/D = 0.943 (L/D)_{max}$  (constant throttle)  $L/D = 0.866 (L/D)_{max}$  (constant altitude)
  - **Most Efficient loiter** occurs near  $L/D \sim (L/D)_{max}$  (minimum thrust)

$$E = \frac{L}{D} \frac{1}{C} \ln \left[ \frac{W_i}{W_f} \right]$$

- Propeller aircraft
  - **Most Efficient cruise** occurs near  $L/D = (L/D)_{max}$  (minimum thrust)
  - **Most Efficient loiter** occurs near  $L/D = 0.866 (L/D)_{max}$  (minimum power)



### Flight Performance: Cruise & Loiter

#### • Max Loiter (Jets) and Max Range (Propellers)

$$V_{(L/D)_{\text{max}}} = \sqrt{\frac{2W}{\rho C_{L_{opt}}S}} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{C_{D_0}}}$$

$$Max \text{ Range Speed (Jets)}$$

$$V_{\text{best range}} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{3K}{C_{D_0}}}$$

$$C_L$$

$$Max \text{ Loiter (Propellers)}$$

$$V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$Max \text{ Loiter (Propellers)}$$

$$V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$Max \text{ Loiter (Propellers)}$$

$$V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

$$V_{\min P_R} = \sqrt{\frac{2W}{\rho S}} \sqrt{\frac{K}{3C_{D_0}}}$$

•

•



### **Vehicle Performance**

#### **Recommended Reading for Topics in Vehicle Performance**

| Торіс                            | Recommended References                                                                         |  |
|----------------------------------|------------------------------------------------------------------------------------------------|--|
| Vehicle Performance              |                                                                                                |  |
| Aircraft Performance Methods     | Chapter 3, Nicolai & Carichner, Ref. AVD 1                                                     |  |
| Takeoff and Landing Analysis     | Chapter 10, Nicolai & Carichner, Ref. AVD 1                                                    |  |
| Performance and Flight Mechanics | Chapter 17, Raymer, Ref. AVD 2                                                                 |  |
| Performance (GA Aircraft)        | Chapters 16 thru 22, Gudmundsson, Ref. AVD 4                                                   |  |
| Aircraft Performance             | Chapter 13, Kundu, Ref. AVD 8                                                                  |  |
| Aircraft Flight Performance      | Chapters 1 thru 16, Filippone, Ref. FM 4                                                       |  |
| Aircraft Noise and Emissions     | Chapters 17 thu 23, Filippone, Ref. FM 4                                                       |  |
| Performance                      | See Performance folder for misc documents in Supplemental<br>Reference Material on course site |  |



### Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



### 10.6 Structures & Materials

# Structures & Materials subteam members should review their R&Rs, and any project data deliverables in the RFP

### **Structural Design Criteria**



## • Loads Engineers develop a set of external loads (aerodynamic and inertia loads) that a 'lightest weight' structure must withstand without failing

62 CM A10

ROFTON DEPARTMENT OF

13 August 2024

Source: Ch 19, Ref. AVD 1 (Nicolai & Carichner)



### **Typical V-n Diagram**

#### Student Design Team Example





### **External Loads Development Process**





### **Aircraft Structure & Systems Layout**







#### Aircraft Structural Layout Example Student Design Team Example to Emulate





### **Typical Wing Box:** *Structural Components*

A wing box is made of three structural members: wing skin, spars, and ribs.

Wing skin panels are located on the top and bottom of the wings. Skin can aid in the reaction of bending moments, but it primarily carries shear loading.

**Spars** are members that run along the span of the wing and react carry bending and shear loads from lift.

**Ribs** run across the spars and they give form to the wing covers as well as prevent buckling of the wing covers.



Source:

Arevalo, PT, "Design Optimization of a Composite Wing Box for a High-Altitude Long-Endurance Aircraft," Ph.D. Thesis, Embry-Riddle Aeronautical University, Florida, May 2014



**C-130 Center Wing Box** 



Source: Strul, E., "IAI C-130 Life Extension Program CWB Replacement," C-130 Hercules Operators Council, 2013

13 August 2024



### **Typical Wing Structural Layout**



#### Refine/validate Structural Layout Through Analyses

13 August 2024

Source: Ch. 5, Ref. AVD 4 (Gudmundsson)



### **Structural Design Rules of Thumb**

- 1. Keep load paths simple and direct
- 2. All six components of structural loading must be considered
- 3. A statically determinate structure is usually preferred for minimum weight (Fail safe requirements might dictate a statically indeterminate design)



- 4. Each structural component should serve multiple functions
- 5. Subsystems integration requirements must be considered early



### **Materials Selection**

- One of the most important decisions with far-reaching implications for vehicle weight, performance, manufacturing schedule, reliability, maintainability, and cost
- Key parameters to consider in selecting airframe materials include:
  - o specific strength—ultimate tension strength ( $F_{tu}$ ) divided by material density
  - specific stiffness—Young's modulus (E) divided by density
  - o operational environment—for example temperature range, humidity, etc.
  - o fracture toughness ( $K_{IC}$ )—inherent capability to resist crack growth
  - o manufacturability—ability to fabricate an end product using standard tools and methods
  - o minimum gage limitations—minimum thickness to which material can be produced
  - o availability—long lead times from several months to well over a year



**71** CM A10

13 August 2024

Source: Ch. 19, Ref. AVD 1 (Nicolai & Carichner)



### Aerospace Advanced Composite Usage

Structural Weight Consisting of Advanced Composites



72 CM A10

13 August 2024

Source: Arris Composites, Inc. (Alex Huckstepp, LinkedIn post, July 2020)


# **Structures & Materials**

#### **Recommended Reading for Topics in Structures & Materials**

| Торіс                      | Recommended References                                                  |  |  |
|----------------------------|-------------------------------------------------------------------------|--|--|
| Structures & Materials     |                                                                         |  |  |
| Structures and Materials   | Chapter 19, Nicolai & Carichner, Ref. AVD 1                             |  |  |
| Structures and Loads       | Chapter 15, Raymer, Ref. AVD 2                                          |  |  |
| Aircraft Structural Layout | Chapter 5, Gudmundsson, Ref. AVD 4                                      |  |  |
| Aircraft Loads             | Chapter 5, Kundu, Ref. AVD 8                                            |  |  |
| Airframe Structural Design | Book by Michael C.Y. Niu, Ref. STR 1                                    |  |  |
| Composite Airframe         | Book by Michael C.Y. Niu, Ref. STR 2                                    |  |  |
| Structural Sizing          | See Structures folder in Supplemental Reference Material on course site |  |  |



# Outline

### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



# 10.7 Subsystems

# Subsystems subteam members should review their R&Rs, and any project data deliverables in the RFP



# **Subsystems**

#### Typical Air Vehicles Subsystems

- Landing Gear
- Crew station requirements and cockpit layout
- Avionics system
- Flight control system and actuators
- Passenger and cargo arrangement (volume and weight)
- Weapons system if appropriate
- Environmental Control System (ECS)
- Thermal Management System
- Fuel system
- De-icing system
- ...

#### In Conceptual Design phase:

- Focus on relevant technology developments and current systems used
- Concentrate on SWaP, i.e., size (volume), weight, and power requirements
- In Preliminary Design phase:
  - Select <u>specific</u> systems with *actual* SWaP values



The following slides show examples of subsystems integration—many from previous years' student design reports—to illustrate the nature of deliverables expected of the Air Vehicle Subsystems team at the end of the project.



# **More Electric Aircraft Subsystems**

#### Electrification of Subsystems Ice-Protection Systems: WIPS: Electro-Mechanical Eliminates heavy, bleed-air architecture 2x250 kVA generators per engine with Expulsion de-icing variable frequency generation CIPS; bleed-air provides ~60% system weight reduction WING BOX CREW ESCAPE HATCH ENA'S AND TORQUE DRIVEN TUBES CABIN APU AIRCUPT C.O. FUEL C.G. ~- when AVIONICS BAY N.L.G L.G. FUEL CARGO CARGO FUEL RADAR LATRU'S AND AFT LE BAY -ECS COMPRESSORS BULK CARGO 4 POWER DISTRUBUTION/LIQUID COOLING PACKS-FF BA Flight Control System: ECS and Power Dist.: APS5000 450 kVA APU: Duplex FBW system with Electric, adjustable A/C Lowest emissions and conventional control and Liquid cooling for noise levels available yoke feedback. primary panels Electric subsystems will reduce maintenance, and fuel consumption by 3% CHRO 12 28 April 2020.



Landing Gear





# Landing Gear

| Integration Criteria             | Requirement                                               | SWIFT-Jet   |
|----------------------------------|-----------------------------------------------------------|-------------|
| Take-Off Clearance( $\alpha_C$ ) | $\alpha_C \ge \alpha_{TO} = 9^{\circ}$                    | 12.8°       |
| Steering Controllability         | $\frac{Bm_m in}{B} \ge 5\% \& \frac{Bm_m ax}{B} \le 20\%$ | 5.3% & 9.2% |
| Tip Back $(\alpha_{tb})$         | $\alpha_{tb} \ge \alpha_{TO} + 5^\circ = 14.2^\circ$      | 20.8°       |
| $Overturn(\Phi_{OT})$            | $\Phi_{OT} \ge 25^{\circ}$                                | 31.7°       |





### **Crew Station**





### **Crew Station**









#### NHA PDR | 4/27/21 | 17



# B757-300 Cockpit Plan





# F-16 Cockpit: Avionics Layout





# **Flight Crew Interface/Control**



#### 85 CM A10

13 August 2024



# **Garmin G-3000 Avionics Architecture**





# **FCS Integration**

# Flight Control System: Fly-By-Wire





# Key Components of Fly-By-Wire System

| Fly By Wire System                                                      | Power Demand<br>(Watts) | Weight (Ibs) |
|-------------------------------------------------------------------------|-------------------------|--------------|
| Rockwell-Collins Flight Computer                                        | 175                     | 14           |
| (8x) Moog 863 Rotary Servo Actuators<br>(+/- 45 deg @ 150 in-lb torque) | 16                      | 14.4         |
| iMAR Inertial Measurement Sensor                                        | 35                      | 18.7         |
| Septino GNSS<br>(Global Navigation Satellite System)                    | 6                       | 2.2          |
| (3x) Simtec ADS-7 Heated Air Pitots                                     | 120                     | 13.2         |
| FJ33 Engine FADEC                                                       | 200                     | 11           |
| Totals                                                                  | 552                     | 73.5         |















#### SWIFT-Jet seamlessly integrates within existing infrastructure to solve worldwide airport congestion

WIDTH: 18"

PITCH: 36'

WIDTH: 21"

(CARGO X-SECTION)

13 August 2024



# Electric Power Generation & Distribution to Major Subsystems



TRAS – Thrust Reverser Actuation System

FCAS – Flight Control Actuation System WIPS – Wing Ice Protection System



# Electric & Hydraulic Systems Integration





# **Fuel System Architecture**



The fuel system will ensure both engines receive the necessary amount of fuel to produce the required thrust throughout the flight envelope





# **A Typical Aircraft Thermal Management System (TMS)**



## TMS detailed design usually deferred to later stages of the Design Cycle

PAO: polyalphaolefin



# **Air Vehicle Subsystems**

#### **Recommended Reading for Topics in Air Vehicle Subsystems**

| Торіс                                   | Recommended References                                                         |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------|--|--|
| Air Vehicle Subsystems                  |                                                                                |  |  |
| Crew Station, Passengers, and Payload   | Chapters 9 & 11, Raymer, Ref. AVD 1                                            |  |  |
| Fuselage Design                         | Chapter 7, Sadraey, Ref. AVD 5                                                 |  |  |
| Systems Architecures                    | Chapter 5, Moir & Seabridge, Ref. AS 1                                         |  |  |
| Aircraft Systems Examples               | Chapter 10, Moir & Seabridge, Ref. AS 1                                        |  |  |
| Power Systems Issues                    | Chapter 11, Moir & Seabridge, Ref. AS 1                                        |  |  |
| Key Characteristics of Aircraft Systems | Chapter 12, Moir & Seabridge, Ref. AS 1                                        |  |  |
| Aircraft Subsystems Integration         | Book by Moir and Seabridge, Ref. AS 2                                          |  |  |
| Civil Avionics Systems                  | Book by Moir and Seabridge, Ref. AS 3                                          |  |  |
| Military Avionics Systems               | Book by Moir and Seabridge, Ref. AS 4                                          |  |  |
| Undercarriage                           | Chapter 7, Kundu, Ref. AVD 8                                                   |  |  |
| Landing Gear and Subsystems             | Chapter 11, Raymer, Ref. AVD 2                                                 |  |  |
| Landing Gear Design                     | Chapter 9, Sadraey, Ref. AVD 5                                                 |  |  |
| The Anatomy of the Landing Gear         | Chapter 13, Gudmundsson, Ref. AVD 4                                            |  |  |
| Aircraft Landing Gear Design            | Book by Currey, Ref. AS 5                                                      |  |  |
| Fuselage, Fuel Systems and Landing Gear | See Subsystems folder in Supplemental Reference Material folder on course site |  |  |



# Outline

### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



# A10.8 Stability & Control

# Stability & Control (S&C) subteam members should review their R&Rs, and any project data deliverables in the RFP



# Provide Evidence that the Design Meets S&C Requirements

- FAR Requirements on Stability are comparatively vague by design
- MIL-F-8785C provides more useful numbers for requirements
  - Based on aircraft class (Transport, Fighter) and Flight Phase
- Roll Control in time to certain bank angle (Dependent on class)
- Pitch Control in takeoff rotation at Stall Speed in 3-5s at specified angular rate

| Dynamic Mode    | MIL Stability Requirement         |
|-----------------|-----------------------------------|
| Phugoid         | $\zeta_{ph} \ge 0.04$             |
| Short Period    | $0.3 \geq \zeta_{ m sp} \leq 2.0$ |
| Roll Subsidence | $T_R \le 1.4$                     |
| Spiral          | $\mathrm{T}_{2s} \geq 20$         |
| Dutch Roll      | $\zeta_d \ge 0.08$                |



# **Aircraft Trim vs Control**

- Separate systems for each or a single system that provides both?
  - Adjustable elevators, flaps, trim tabs
  - Define their respective regimes and ensure compatibility



https://fl360aero.com/detail/aircraft-pitch-trim-system-how-does-a-stab-trim-or-trimmable-horizontal-stabilizer-work/276



https://airplaneacademy.com/aircraft-trim-explained-with-pictures/



# **Scissor Plot (X-plot) Example**



Source: https://www.fzt.haw-hamburg.de/pers/Scholz/HOOU/AircraftDesign\_11\_EmpennageSizing.pdf

13 August 2024



### **Scissor Plot (X-plot) Example**



Source: https://www.semanticscholar.org/paper/FLYING-QUALITIES-CONSTRAINTS-IN-THE-DESIGN-OF-A-Morris-Schetz/6eee07c8221cccdd2f3060f044c5b33a086e4e40/figure/6



# **Stability & Control**

#### **Recommended Reading for Topics in S&C**

| Торіс                                                     | Recommended References                                                             |  |  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Stability & Control                                       |                                                                                    |  |  |
| Static Stability and Control                              | Chapter 21, Nicolai & Carichner, Ref. AVD 1                                        |  |  |
| Trim Drag and Maneuvering Flight                          | Chapter 22, Nicolai & Carichner, Ref. AVD 1                                        |  |  |
| Control Surface Sizing Criteria                           | Chapter 23, Nicolai & Carichner, Ref. AVD 1                                        |  |  |
| Stability, Control, and Handling Qualities                | Chapter 16, Raymer, Ref. AVD 2                                                     |  |  |
| The Anatomy of the Tail                                   | Chapter 11, Gudmundsson, Ref. AVD 4                                                |  |  |
| Tail Design                                               | Chapter 6, Sadraey, Ref. AVD 5                                                     |  |  |
| Design of Control Surfaces                                | Chapter 12, Sadraey, Ref. AVD 5                                                    |  |  |
| Stability Considerations Affecting Aircraft Configuration | Chapter 12, Kundu, Ref. AVD 8                                                      |  |  |
| Boeing S&C Course Notes and Empennage Design              | See Stabilty & Control folder in Supplemental Reference<br>Material on course site |  |  |



# Outline

### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control

#### A10.9 Weights (Mass Properties) & Balance

A10.10 Cost & Manufacturing



# A10.8 Weights (Mass Properties) & Balance

# Weights & Balance subteam members should review their R&Rs, and any project data deliverables in the RFP



# **Weight Estimation Methods**





# Final "Weight Statement"

Table 1. ACSYNT'S DATABASE PROVIDED A BOEING 737-300 WEIGHT STATEM

|                          | Item                                           |        |                   | Weight       |            |
|--------------------------|------------------------------------------------|--------|-------------------|--------------|------------|
|                          | Airframe Structure                             |        |                   | 36,392. Ibs  | Π          |
|                          | Wing                                           |        | 11,837.           |              |            |
|                          | Fuselage                                       |        | 14,325.           |              |            |
|                          | Horizontal Tail                                |        | 1,737.            |              |            |
|                          | Vertical Tail                                  |        | 1,092.            |              |            |
|                          | Nacelles                                       |        | 1,997.            |              |            |
|                          | Landing Gear                                   | 1 920  | 5,494.            |              |            |
|                          | Main                                           | 3,654  |                   |              |            |
|                          | Propulsion                                     | 3,004. |                   | 9 693        |            |
|                          | Engines                                        |        | 8.460             | 3,033.       |            |
|                          | Fuel System                                    |        | 705               |              |            |
|                          | Thrust Reversers                               |        | 532.              |              |            |
|                          | Fixed Equipment                                |        |                   | 23,216.      |            |
| Empty Weight –           | Hydraulics & Pneumatics                        |        | 592.              |              |            |
|                          | Electrical                                     |        | 4,042.            |              |            |
|                          | Avionics                                       |        | 2,362.            |              | Operating  |
|                          | Instrumentation                                |        | 780.              |              | - perating |
|                          | De-Icing & Air Conditioning                    |        | 1,546.            |              | Empty      |
|                          | Auxiliary Power System                         |        | 877.              |              |            |
|                          | Furnishings & Equipment                        |        | 11,523.           |              | Weight     |
|                          | Seats & Lavatories                             | 6,160. |                   |              | -          |
|                          | Galleys<br>Misselley actor Coolwit Furnishings | 1,820. |                   |              |            |
|                          | Cabin Euroisbings                              | 234.   |                   |              |            |
|                          | Cabin Emergency Equipment                      | 2,501. |                   |              |            |
|                          | Cargo Handling                                 | 350    |                   |              |            |
|                          | Flight Controls                                | 000.   | 1 599             |              |            |
|                          | Empty Weight                                   |        | 1,0001            | 69.301. lbs  |            |
|                          | Operating Items                                |        | 3,305.            |              |            |
|                          | Flight Crew                                    | 340.   |                   |              |            |
| Operating Empty Weight — | Crew Baggage & Provisions                      | 175.   |                   |              |            |
|                          | Flight Attendants                              | 520.   |                   |              |            |
|                          | Unusable Fuel & Oil                            | 310.   |                   |              |            |
|                          | Passenger Service                              | 1,960. |                   |              |            |
|                          | Cargo Containers                               | 0.     |                   | 70.000       |            |
| Eucl Weight              | Operating Weight Empty                         |        | 27 205            | 72,606.      |            |
| ruel weight              | Payload                                        |        | 37,205.<br>28,000 |              |            |
| Devload Weight           | Passonners                                     |        | 23,000.           |              |            |
| rayioad weight –         | Baddade                                        |        | 4 200             |              |            |
|                          | Cargo                                          |        | -,200.            |              |            |
| Takeoff Gross Weight ——  | →TakeOff Gross Weight                          |        |                   | 137,811. Ibs |            |

**105** CM A10

13 August 2024



# Weight & Moment Summary

#### Table 20.1 Weight and Moment Summary

| Component       | Weight (lb) | Distance from Aircraft Nose (ft) | Moment (ft-lb) |
|-----------------|-------------|----------------------------------|----------------|
| Fuselage        |             |                                  |                |
| Wing            |             |                                  |                |
| Main gear       |             |                                  |                |
| Vertical tail   |             |                                  |                |
| Horizontal tail |             |                                  |                |
| etc.            |             |                                  |                |
|                 | ΣWt         | Total moment =                   | ΣΜ             |

 $X_{c.g.} = \text{Total Moment}/\Sigma\text{Wt}$ 

- C.G. location reported as distance from the nose and % MAC
- Determine C.G. location for full and empty aircraft and report as most forward and most aft locations



# C.G. Travel Example (F-4D)



13 August 2024

Source: Fig. 23.2, Chapter 23, AVD 1 (Nicolai & Carichner)



# **Boeing 777 C.G. Limits**




## Weights & Balance

#### **Recommended Reading for Topics in Weights & Balance**

| Торіс                                            | Recommended References                                                            |
|--------------------------------------------------|-----------------------------------------------------------------------------------|
| Weights & Balance                                |                                                                                   |
| Refined Weight Estimate                          | Chapter 20, Nicolai & Carichner, Ref. AVD 1                                       |
| Weights                                          | Chapter 15, Raymer, Ref. AVD 2                                                    |
| Weight Control and Balance                       | Chapter 16, Niu, Ref. AS 1                                                        |
| Aircraft Weight and Center of Gravity Estimation | Chapter 8, Kundu, Ref. AVD 8                                                      |
| Aircraft Weight Analysis                         | Chapter 6, Gudmundsson, Ref. AVD 4                                                |
| Weight of Components                             | Chapter 10, Sadraey, Ref. AVD 5                                                   |
| Aircraft Weight Distribution                     | Chapter 11, Sadraey, Ref. 9 in PR                                                 |
| CG Limits and Weights & Balance                  | See Weights & Balance folder in Supplemental Reference<br>Material on course site |



### Outline

#### A10. Preliminary Design: Refine & Validate Baseline Design

- A10.1 General Remarks
- A10.2 Configuration Layout and Loft
- A10.3 Aerodynamics
- A10.4 Aeropropulsion Integration
- A10.5 Vehicle Performance
- A10.6 Structures & Materials
- A10.7 Subsystems
- A10.8 Stability & Control
- A10.9 Weights (Mass Properties) & Balance

#### A10.10 Cost & Manufacturing



## A10.10 Cost & Manufacturing

# Cost & Manufacturing subteam members should review their R&Rs, and any project data deliverables in the RFP



## **Cost & Manufacturing**

- Cost estimation: The Critical Area—Start Early!
- All Team members should factor in cost considerations of their assigned area into every decision
- See CM A6
- Manufacturing planning





## **Cost & Manufacturing**

#### **Recommended Reading for Topics in Cost & Manufacturing**

| Торіс                                           | Recommended References                                                                  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------|
| Cost & Manufacturing                            |                                                                                         |
| Life Cycle Cost                                 | Chapter 24, Nicolai & Carichner, Ref. 1 in PR                                           |
| Cost Analysis                                   | Chapter 18, Raymer, Ref. 2 in PR                                                        |
| Aircraft Cost Analysis                          | Chapter 2, Gudmundsson, Ref. 10 in PR                                                   |
| Aircraft Cost Considerations                    | Chapter 16, Kundu, Ref. 8 in PR                                                         |
| Design for Manufacturing                        | Chapter 2, Niu, Ref. 24 in PR                                                           |
| Composite Manufacturing                         | Chapters 3 & 4, Niu, Ref. 25 in PR                                                      |
| Aircraft Manufacturing Considerations           | Chapter 17, Kundu, Ref. 8 in PR                                                         |
| Cost Estimation & Manufacturing Consideerations | See Cost and Manufacturing folders in Supplemental<br>Reference Material on course site |