

Air Vehicle Design AOE 4065 – 4066

II. Air Vehicle Design Fundamentals

Course Module A8

Trade Studies

Kevin T. Crofton Department of Aerospace and Ocean Engineering Blacksburg, VA

AOE 4065-4066:

Capstone Air Vehicle Design (AVD) Course Modules (CMs)

Overview of AVD Courses

I. Foundational Elements

- F1. Design: An Engineering Discipline
- F2. Systems and Systems Thinking
- F3. Basics of Systems Engineering
- F4. Decision Making with Ethics and Integrity

II. Air Vehicle Design Fundamentals

A1. Purpose & Process

Conceptual Design

- A2. Understand the Problem
- A3. Solve the Problem
- A4. Initial Sizing: Takeoff Weight Estimation
- A5. Initial Sizing: Wing Loading and Thrust Loading Estimation
- A6. Cost Considerations
- A7. Concept to Configuration: Key Considerations
- A7A. Configuration Layout: Drawings & Loft

Conceptual & Preliminary Design

- **A8. Trade Studies**
- **A9.** Use of Software Tools
- A10. Preliminary Design: Baseline Design Refinement & Validation

III. Project Management Topics

- P1. Basics of Project Management and Project Planning
- **P2.** Project Organization
- P3. Roles & Responsibilities of Team Members
- P4. Project Execution: Teamwork for Success
- P5. Project Risk Management
- P6. Delivering Effective Oral Presentations
- **P7.** Writing Effective Design Reports

<u>Disclaimer</u>

Prof. Pradeep Raj, Aerospace and Ocean Engineering, Virginia Tech, collected and compiled the material contained herein from publicly available sources solely for educational purposes.
Although a good-faith attempt is made to cite all sources of material, we regret any inadvertent omissions.

CRUCIALLY IMPORTANT

CMs only introduce key topics and highlight some important concepts and ideas...but without sufficient detail. We must use lots of Reference Material* to add the necessary details! (*see Appendix in the Overview CM)

Outline

- **A8. Trade Studies**
 - A8.1 General Remarks
 - A8.2 Design (or Configuration) Trades
 - A8.3 Mission Trades
 - A8.4 Technology Trades
 - A8.5 Carpet Plot Technique

Definition: A Trade Study is a decision-making method used to identify the best solution among a group of proposed solutions.

- The Defense Acquisition Encyclopedia

- A trade study examines qualified solutions against criteria such as cost, schedule, performance, weight, system configuration, complexity, the use of Commercial Off-the-shelf (COTS), and many others.
- Trade Studies are performed throughout an acquisition program, from concept development through system design.
- Trade studies involve sequentially making small changes to the design parameters and comparing the results to the baseline values. For example, the 'best' pair of wing loading and thrust loading for the lightest weight aircraft is determined using a trade study that systematically varies a set of baseline values and determines the effect on aircraft weight (see Sect. A8.5)

Why conduct trade studies?

To meet the goal of the Aircraft Design Team which is to

"INTEGRATE all...geometrical and dimensional requirements, equipment, structural components...into a vehicle that is BALANCED with respect to flight in all phases of its flight envelope and ground operations...Satisfy the DESIRED requirements with the <u>lightest weight</u> (or least cost) vehicle."

-- Nathan Kirschbaum

Trade Studies are key to achieving the design goals

Purpose of Trade Studies in Conceptual Design Phase

- We have made initial estimates of W_{TO} , W/S, T/W
- We assumed (or estimated) values of several parameters, AR, C_{D0}, L/D, C_{Lmax}, sfc, V, cruise altitude, etc.
- Can we say that we have the *BEST* (*lightest weight*) vehicle that is *balanced* and *satisfies ALL customer requirements*?

Trade Studies (aka Parametric Studies) are conducted to produce evidence to answer this question in the affirmative!

Bottom Line

- Trade studies are pervasive in design
- The studies establish a basis for design decisions

<u>Caution:</u> Use Trade Study results in conceptual design as "indicators" or "flags," not definitive answers—too early in the game!

"Only through the trade studies will

the true optimum aircraft emerge." -- Raymer

Types of Trade Studies in Aircraft Conceptual Design

Trade Studies help you select parameters for best design

Trade Studies Challenges

- <u>Problem</u>: Of a large number of parameters that affect aircraft design, what combination of parameters will give the BEST design (lightestweight aircraft or another Measure of Merit such as cost or fuel consumption) while meeting all requirements?
- *"Brute-force" <u>Approach</u>:* Sort through all possible combinations of numerous parameters in a systematic manner to find the best set.
 - Easier said than done! Impractical to do by hand
 - Motivator for computer-assisted Multidisciplinary Design Optimization (MDO)
- Performing parametric analyses is a tall order.
- Collecting and compiling all results for comparative evaluation to select the best combination is even more daunting.
- Visual display of <u>Results</u> (multi-dimensional data) that easily "convinces" the customer that you indeed have the best combination is priceless!

Example of Parametric Study for

Cost* Optimization (VT Student Design Project)

	Preferred Concept	TS 6	TS 7	TS 8	TS 9	TS 10
Fuel Type	H2		H2	H2	H2	H2
Loiter Velocity (kts)	150	200	200	200	150	175
Altitude (ft)	60000	65000	60000	65000	60000	65000
Endurance (days)	8	10	8	8	11	11
Payload (lbs)	2000	2000	3000	3000	2000	2000
TOGW (lbs)	13159	20186.21	20591.96	19206.49	14392.23	21005.86
Fuel Weight (lbs)	3878	8375.24	7677.5	6761.95	4658.48	8960.13
Aspect Ratio	40	40	40	40	40	30
Wing Span (ft)	260	260	260	260	260	260
Wing Area (square ft)	1690	1690	1690	1690	1690	2253.33
Wing Loading (psf)	7.79	11.94	12.18	11.36	8.52	9.32
Lift Coefficient (Loiter) 1.08		1.18	0.95	1.12	1.18	1.2
Loiter Power Required (hp) 115.46		245.04	226.66	236.86	129.62	279.14
Climb Power Required (hp) 314.85		550.89	538.66	527.87	347.69	597.41
Cruise Velocity (kts) 150		150	150	150	100	100
Aircraft per System	2	2	2	2	2	2
Cost (millions) 157.71		252.82	258.19	246.39	166.23	237.31

*Cost was the key Measure of Merit (MoM)

11 CM A8

13 August 2024

Example of Parametric Study for Cost* Optimization

	Preferred Concept	TS 6	TS 7	TS 8	TS 9	TS 10
Fuel Type	H2	H2	H2	H2	H2	H2
Loiter Velocity (kts) 150		200	200	200	150	175
Altitude (ft)	e (ft) 60000		60000	65000	60000	65000
Endurance (days)	8	10	8	8	11	11
Payload (lbs)	2000	2000	3000	3000	2000	2000
TOGW (lbs)	13159	20186.21	20591.96	19206.40	14392.23	21005.86
Fuel Weight (lbs)	3878	8375.24	7677.5	0761.95	0158.48	8960.13
Aspect Ratio	40	40	onitica	Jing Lu	40	30
Wing Span (ft)	260	er QI	Gab,	260	260	260
Wing Area (square ft)	Ning Area (square ft) 1690		1690	1693 9	1690	2253.33
Wing Loading (psf)		11.94	12.18	11.36	8.52	9.32
Lift Coefficient (Loit	nar.88	1.18	16.55	1.12	1.18	1.2
Loiter Power Required	115.46	200	226.66	236.86	129.62	279.14
Climb Power Required (hp)	314.8	550.89	538.66	527.87	347.69	597.41
Cruise Velocity (kts)	150	150	150	150	100	100
Aircraft per System	2	2	2	2	2	2
Cost (millions)	157.71	252.82	258.19	246.39	166.23	237.31

*Cost was the key Measure of Merit (MoM)

12 CM A8

13 August 2024

Visual Display of Results

Outline

A8. Trade Studies

- A8.1 General Remarks
- A8.2 Design (or Configuration) Trades
- A8.3 Mission Trades
- A8.4 Technology Trades
- A8.5 Carpet Plot Technique

Types of Trade Studies in Aircraft Conceptual Design

Trade Studies help you select parameters for best design

Design Trades (aka Configuration Trades)

What would be the impact on MoM if design features were changed?

Examples of Design Features

- Wing size (affects wing loading)
- Wing shape (sweep, AR, taper ratio, etc.)
- High-lift devices (mechanical vs. powered)
- Fuselage size and shape (fineness ratio, cross-sectional area distribution, etc.)
- Tail configuration (aft tail, canard, tailless)
- Stability level (degree of static margin)
- Engine (turboprop, turbofan, turbojet, number of engines, bypass ratio, podded or buried, etc.)
- Inlet and nozzle (location, type)
- Materials (metals or composites)

Design Trades facilitate selection of the right combination of design features for the most efficient vehicle to meet MoMs

. . .

Example: Critical Design Choices for Configuration Down-selection

Source: 2009-10 AIAA UG Team Aircraft Design Winning Team, Cal Poly, SLO

Example: Best AR for Fuel Efficiency

Design Objective Minimize Fuel Burn for a Passenger Transport Aircraft

Source: 2009-10 AIAA UG Team Aircraft Design Winning Team, Cal Poly, SLO

Example of Configuration Trade Study

Outline

A8. Trade Studies

- A8.1 General Remarks
- A8.2 Design (or Configuration) Trades
- A8.3 Mission Trades
- A8.4 Technology Trades
- A8.5 Carpet Plot Technique

Types of Trade Studies in Aircraft Conceptual Design

Trade Studies help you select parameters for best design

What would be the impact on TOGW if we changed Payload (±25%), Range (±25%), Endurance (±25%), etc.?

- Trade Study of TOGW for varying fixed weight gives weight sensitivity ratio, $\Delta W_{TO} / \Delta W_{payload}$, of 3.8!
- It is also called *aircraft* growth factor.
 - Typically, larger the payload fraction, larger the growth factor.

Source: Fig. 5.6, Ref. AVD 1 (Nicolai and Carichner)

 Use Mission Trade results to *identify requirements* that might be <u>dominant design drivers</u>—the ones to which TOGW is most sensitive.

22 CM A8

13 August 2024

Payload-Range Trade

- Conducted for aircraft with range or payload as key drivers
- Payload-Range plots that are useful for interactions with customers; may be helpful in "refining" requirements

Source: Fig. 15-4, Ref. AVD 13 (Schaufele)

A330-300 Payload-Range Capability

Payload-Range Parametric Study

- Nine-passengers, each 200 lb_f
- Maximum TOGW of 7,500 lb_f & max fuel weight of 2,000 lb_f

Empty Weight would be a dominant design driver!

Outline

A8. Trade Studies

- A8.1 General Remarks
- A8.2 Design (or Configuration) Trades
- A8.3 Mission Trades

A8.4 Technology Trades

A8.5 Carpet Plot Technique

Types of Trade Studies in Aircraft Conceptual Design

Trade Studies help you select parameters for best design

Technology Trades

What would be the impact on TOGW (or some other MoM) if we <u>could</u> change L/D (±10%), sfc (±10%), Wing Weight (±10%), etc., etc.?

Benefits of Technology Trades

- Technology Trades provide a basis for Risk Analysis
 - Consequence (or impact) of technology failing to perform
 - Probability of technology failing to perform
- Results useful for Technology Investment Planning
 - Payoffs of accelerated technology maturation

W_{TO} Variation with Range for Fixed Payload

31 CM A8

13 August 2024

Outline

A8. Trade Studies

- A8.1 General Remarks
- A8.2 Design (or Configuration) Trades
- A8.3 Mission Trades
- A8.4 Technology Trades
- A8.5 Carpet Plot Technique

To facilitate learning about parametric studies for multiple independent variables... ...we will talk about Carpet Plots

- "The graphed values of a function of more than one variable, read from an ordinate at points located by the intersection of curves of constant values of each of the variables." –Collins Dictionary
- A powerful techniques widely used to depict the response of a system of two or more independent variables and one or more dependent variables

Consider an example with three parameters (*start small*!)

- Take-off Gross Weight, *W*_{TO}(Dependent Variable)
- Wing Loading, *W/S* (*Independent Variable*)
- Thrust Loading, *T/W* (*Independent Variable*)

Questions to answer for this example

1. How does W_{TO} change with different combinations of W/S and T/W?

2. What combination best meets customer needs?

33 CM A8

Carpet Plots: Step A (Starting Point)

Step A. Basic Two-variable Plot

Make Individual Plots for <u>Several</u> Wing-loading Values

13 August 2024

Carpet Plots: Step B

Step B. Three variables with *abscissa scale shift*

Source: Figure 25.3, Ref. AVD 1 (Nicolai and Carichner)

Carpet Plots: Step C

Step C. Completed Carpet Plot

Note: abscissa scale deleted

Trade Studies Example

Value of Carpet Plots: A Supersonic Fighter Example

What is the "best" combination to meet <u>ALL</u> requirements?

Using a Carpet Plot: A Supersonic Fighter Example

Using a Carpet Plot: A Supersonic Fighter Example

F/A-36 Carpet Plot with Constraints

Source: 2013-14 NAVAIR Carrier-based Tactical Fighter Team, VT (Lead: Williams)

13 August 2024

Suggested Software for Carpet Plots

1. Carpet Plot Toolkit, Version 1.0, by Rob McDonald, in AMathWorks®

https://www.mathworks.com/matlabcentral/fileexchange/40831-carpet-plot-toolkit

2. Generation of Carpet Plots, Sydney Powers

http://www.dept.aoe.vt.edu/~mason/Mason_f/SD1CarpetsbySAP.pdf

Note:

Carpet Plot is a general technique, not limited to just determining the best combination of W/S and T/W for minimum W_{TO} (takeoff gross weight).

A Three-parameter Carpet Plot

Effect of BSFC and Propeller Efficiency on TOGW Notice different parameters (not W/S and T/W)

HALE UAS Example

13 August 2024

A Three-parameter Carpet Plot

Effect of L/D on TOGW

Three-parameter Carpet Plot

A Four-parameter Carpet Plot

47 CM A8

¹³ August 2024

A Four-parameter Carpet Plot

48 CM A8

13 August 2024 Source: 2008-09 AIAA Team Design, VT (Lead: Blizard)

A Four-parameter Carpet Plot

Recommended Readings

Ref. No.	Chapter	Author(s)	Title
AVD 1	Chapter 25	Nicolai, L.M. and Carichner, G.E.	Fundamentals of Aircraft and Airship Design , Volume I—Aircraft Design , AIAA Education Series, AIAA, Reston, VA, 2010.
AVD 2	Chapter 19	Raymer, D.P.	Aircraft Design : A Conceptual Approach, AIAA Education Series, AIAA, Reston, VA, 2012.
AVD 4	Chapter 20	Gudmundsson, S.	<i>General Aviation Aircraft Design: Applied Methods and Procedures ,</i> 1 st Ed., Butterworth-Heinemann, September 2013.
AVD 13	Chapter 15	Schaufele, R.D.	<i>The Elements of Aircraft Preliminary Design</i> , Aries Publications, 2000.
AVD 21	Chapter 4	Jenkinson, L.R., and Marchman, J.F.	Aircraft Design Projects for Engineering Students , Co-published by AIAA, Reston, VA, 1999

NOTE: See Appendix in Overview CM